Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_3_a2, author = {Yu. N. Drozhzhinov and B. I. Zavialov}, title = {Distributions asymptotically homogeneous along the trajectories determined by one-parameter groups}, journal = {Izvestiya. Mathematics }, pages = {466--516}, publisher = {mathdoc}, volume = {76}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a2/} }
TY - JOUR AU - Yu. N. Drozhzhinov AU - B. I. Zavialov TI - Distributions asymptotically homogeneous along the trajectories determined by one-parameter groups JO - Izvestiya. Mathematics PY - 2012 SP - 466 EP - 516 VL - 76 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a2/ LA - en ID - IM2_2012_76_3_a2 ER -
%0 Journal Article %A Yu. N. Drozhzhinov %A B. I. Zavialov %T Distributions asymptotically homogeneous along the trajectories determined by one-parameter groups %J Izvestiya. Mathematics %D 2012 %P 466-516 %V 76 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a2/ %G en %F IM2_2012_76_3_a2
Yu. N. Drozhzhinov; B. I. Zavialov. Distributions asymptotically homogeneous along the trajectories determined by one-parameter groups. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 466-516. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a2/
[1] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Generalized functions asymptotically homogeneous along special transformation groups”, Sb. Math., 200:6 (2009), 803–844 | DOI | MR | Zbl
[2] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Asymptotically homogeneous generalized functions at zero and convolution equations with kernels quasi-homogeneous polynomial symbols”, Dokl. Math., 79:3 (2009), 356–359 | DOI | MR | Zbl
[3] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Asymptotically quasi-homogeneous distributions”, Dokl. Math., 78:1 (2008), 503–507 | DOI | MR | Zbl
[4] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones”, Izv. Math., 70:6 (2006), 1117–1164 | DOI | MR | Zbl
[5] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Asymptotically homogeneous generalized functions in spherical representation and applications”, Dokl. Math., 72:3 (2005), 839–542 | MR | Zbl
[6] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | DOI | MR | MR | Zbl | Zbl
[7] O. von Grudzinski, Quasihomogeneous distributions, North-Holland Math. Stud., 165, North-Holland, Amsterdam, 1991 | MR | Zbl
[8] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR | Zbl
[9] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966 | MR | MR | Zbl | Zbl
[10] I. M. Gelfand, G. E. Schilow, Verallgemeinerte Funktionen (Distributionen). I: Verallgemeinerte Funktionen und das Rechnen mit ihnen, VEB, Berlin, 1960 | MR | MR | Zbl | Zbl