Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_2_a8, author = {V. Sh. Tsagareishvili}, title = {Absolute convergence of {Fourier} series of functions of class $\operatorname{Lip}1$ and of functions of bounded variation}, journal = {Izvestiya. Mathematics }, pages = {419--429}, publisher = {mathdoc}, volume = {76}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a8/} }
TY - JOUR AU - V. Sh. Tsagareishvili TI - Absolute convergence of Fourier series of functions of class $\operatorname{Lip}1$ and of functions of bounded variation JO - Izvestiya. Mathematics PY - 2012 SP - 419 EP - 429 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a8/ LA - en ID - IM2_2012_76_2_a8 ER -
%0 Journal Article %A V. Sh. Tsagareishvili %T Absolute convergence of Fourier series of functions of class $\operatorname{Lip}1$ and of functions of bounded variation %J Izvestiya. Mathematics %D 2012 %P 419-429 %V 76 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a8/ %G en %F IM2_2012_76_2_a8
V. Sh. Tsagareishvili. Absolute convergence of Fourier series of functions of class $\operatorname{Lip}1$ and of functions of bounded variation. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 419-429. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a8/
[1] S. Banach, “Sur la divergence des séries orthogonales”, Studia Math., 9 (1940), 139–155 | MR | Zbl
[2] G. Alexits, Convergence problems of orthogonal series, Pergamon Press, New York–Oxford–Paris, 1961 | MR | MR | Zbl | Zbl
[3] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl
[4] J. R. McLaughlin, “Integrated orthonormal series”, Pacific J. Math., 42 (1972), 469–475 | MR | Zbl
[5] B. I. Golubov, “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | MR | Zbl
[6] S. V. Bochkarev, “A method of averaging in the theory of orthogonal series and some problems in the theory of bases”, Proc. Steklov Inst. Math., 146 (1980), 1–92 | MR | Zbl