On the topology of wave fronts in spaces of low dimension
Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 375-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the adjacency indices of the singularities of generic wave fronts in spaces of dimension $n\le6$. As a corollary, we find new conditions for the coexistence of singularities of wave fronts.
Keywords: Legendrian maps, wave fronts, (multi)singularities, adjacency index, Euler characteristic.
@article{IM2_2012_76_2_a7,
     author = {V. D. Sedykh},
     title = {On the topology of wave fronts in spaces of low dimension},
     journal = {Izvestiya. Mathematics },
     pages = {375--418},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a7/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - On the topology of wave fronts in spaces of low dimension
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 375
EP  - 418
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a7/
LA  - en
ID  - IM2_2012_76_2_a7
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T On the topology of wave fronts in spaces of low dimension
%J Izvestiya. Mathematics 
%D 2012
%P 375-418
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a7/
%G en
%F IM2_2012_76_2_a7
V. D. Sedykh. On the topology of wave fronts in spaces of low dimension. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 375-418. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a7/

[1] V. I. Arnold, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publishers, Dordrecht, 1990 | MR | MR | Zbl | Zbl

[2] E. Looijenga, “The discriminant of a real simple singularity”, Compositio Math., 37:1 (1978), 51–62 | MR | Zbl

[3] O. V. Lyashko, “Decomposition of simple singularities of functions”, Funct. Anal. Appl., 10:2 (1976), 122–128 | DOI | MR | Zbl

[4] Yu. S. Chislenko, “Decompositions of simple singularities of real functions”, Funct. Anal. Appl., 22:4 (1988), 297–310 | DOI | MR | Zbl | Zbl

[5] V. A. Vasil'ev, Lagrange and Legendre characteristic classes, Adv. Stud. Contemp. Math., 3, Gordon and Breach, New York, 1988 | MR | Zbl

[6] J. M. Mather, “Stratifications and mappings”, Dynamical systems (Salvador, 1971), Academic Press, New York, 1973, 195–232 | MR | MR | Zbl | Zbl

[7] V. D. Sedykh, “Resolution of corank 1 singularities of a generic front”, Funct. Anal. Appl., 37:2 (2003), 123–133 | DOI | MR | Zbl

[8] V. D. Sedykh, “A complete system of linear relations between the Euler characteristics of manifolds of corank 1 singularities of a generic front”, Funct. Anal. Appl., 38:4 (2004), 298–301 | DOI | MR | Zbl

[9] M. C. Romero Fuster, “Sphere stratifications and the Gauss map”, Proc. Roy. Soc. Edinburgh Sect. A, 95:1–2 (1983), 115–136 | DOI | MR | Zbl

[10] C. McCrory, A. Parusiński, “Algebraically constructible functions”, Ann. Sci. École Norm. Sup. (4), 30:4 (1997), 527–552 | DOI | MR | Zbl

[11] V. M. Zakalyukin, “Lagrangian and Legendrian singularities”, Funct. Anal. Appl., 10:1 (1976), 23–31 | DOI | MR | Zbl

[12] V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps, v. 1, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser, Boston–Basel–Stuttgart, 1985 | MR | MR | Zbl | Zbl

[13] V. I. Arnold, V. A. Vasilev, V. V. Goryunov, O. V. Lyashko, “Osobennosti. II. Klassifikatsiya i prilozheniya”, Dinamicheskie sistemy – 8, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 39, VINITI, M., 1989, 5–249 | MR | Zbl