Theorems on ball mean values for solutions of the Helmholtz equation on unbounded domains
Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 365-374

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a geometric description of the set of solutions of the Helmholtz equation on unbounded domains.
Keywords: Helmholtz equation, ball means, spherical means, eigenfunctions of the Laplace operator.
@article{IM2_2012_76_2_a6,
     author = {O. A. Ochakovskaya},
     title = {Theorems on ball mean values for solutions of the {Helmholtz} equation on unbounded domains},
     journal = {Izvestiya. Mathematics },
     pages = {365--374},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a6/}
}
TY  - JOUR
AU  - O. A. Ochakovskaya
TI  - Theorems on ball mean values for solutions of the Helmholtz equation on unbounded domains
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 365
EP  - 374
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a6/
LA  - en
ID  - IM2_2012_76_2_a6
ER  - 
%0 Journal Article
%A O. A. Ochakovskaya
%T Theorems on ball mean values for solutions of the Helmholtz equation on unbounded domains
%J Izvestiya. Mathematics 
%D 2012
%P 365-374
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a6/
%G en
%F IM2_2012_76_2_a6
O. A. Ochakovskaya. Theorems on ball mean values for solutions of the Helmholtz equation on unbounded domains. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 365-374. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a6/