Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_2_a6, author = {O. A. Ochakovskaya}, title = {Theorems on ball mean values for solutions of the {Helmholtz} equation on unbounded domains}, journal = {Izvestiya. Mathematics }, pages = {365--374}, publisher = {mathdoc}, volume = {76}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a6/} }
TY - JOUR AU - O. A. Ochakovskaya TI - Theorems on ball mean values for solutions of the Helmholtz equation on unbounded domains JO - Izvestiya. Mathematics PY - 2012 SP - 365 EP - 374 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a6/ LA - en ID - IM2_2012_76_2_a6 ER -
O. A. Ochakovskaya. Theorems on ball mean values for solutions of the Helmholtz equation on unbounded domains. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 365-374. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a6/
[1] B. G. Korenev, Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl
[2] V. V. Volchkov, “New theorems on the mean for solutions of the Helmholtz equation”, Russian Acad. Sci. Sb. Math., 79:2 (1994), 281–286 | DOI | MR | Zbl
[3] V. V. Volchkov, “Theorems on ball mean values in symmetric spaces”, Sb. Math., 192:9 (2001), 1275–1296 | DOI | MR | Zbl
[4] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl
[5] O. A. Ochakovskaya, “Precise characterizations of admissible rate of decrease of a non-trivial function with zero ball means”, Sb. Math., 199:1 (2008), 45–65 | DOI | MR | Zbl
[6] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl
[7] V. V. Volchkov, “A definitive version of the local two-radii theorem”, Sb. Math., 186:6 (1995), 783–802 | DOI | MR | Zbl
[8] L. Hörmander, The analysis of linear partial differential operators, v. 1, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[9] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl