Blow-up of ion-sound waves in plasma with non-linear sources on the boundary
Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 310-345

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model equation of ion-sound waves in ‘non-magnetized’ plasma taking account of non-linear sources localized on the boundary. This generates a non-linear dynamical boundary condition which is ‘close’ to the non-linear Neumann–Dirichlet condition. We prove the existence of a weak generalized solution of this initial-boundary value problem and obtain sufficient conditions for the blow-up of this solution in finite time. We give an upper bound for the time of existence of the solution, which equals its blow-up time. We also obtain sufficient conditions for the existence of a strong generalized solution.
Keywords: blow-up, plasma, ion-sound waves, non-linear boundary conditions.
Mots-clés : Sobolev equations
@article{IM2_2012_76_2_a3,
     author = {M. O. Korpusov},
     title = {Blow-up of ion-sound waves in plasma with non-linear sources on the boundary},
     journal = {Izvestiya. Mathematics },
     pages = {310--345},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a3/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Blow-up of ion-sound waves in plasma with non-linear sources on the boundary
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 310
EP  - 345
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a3/
LA  - en
ID  - IM2_2012_76_2_a3
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Blow-up of ion-sound waves in plasma with non-linear sources on the boundary
%J Izvestiya. Mathematics 
%D 2012
%P 310-345
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a3/
%G en
%F IM2_2012_76_2_a3
M. O. Korpusov. Blow-up of ion-sound waves in plasma with non-linear sources on the boundary. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 310-345. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a3/