Blow-up of ion-sound waves in plasma with non-linear sources on the boundary
Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 310-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model equation of ion-sound waves in ‘non-magnetized’ plasma taking account of non-linear sources localized on the boundary. This generates a non-linear dynamical boundary condition which is ‘close’ to the non-linear Neumann–Dirichlet condition. We prove the existence of a weak generalized solution of this initial-boundary value problem and obtain sufficient conditions for the blow-up of this solution in finite time. We give an upper bound for the time of existence of the solution, which equals its blow-up time. We also obtain sufficient conditions for the existence of a strong generalized solution.
Keywords: blow-up, plasma, ion-sound waves, non-linear boundary conditions.
Mots-clés : Sobolev equations
@article{IM2_2012_76_2_a3,
     author = {M. O. Korpusov},
     title = {Blow-up of ion-sound waves in plasma with non-linear sources on the boundary},
     journal = {Izvestiya. Mathematics },
     pages = {310--345},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a3/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Blow-up of ion-sound waves in plasma with non-linear sources on the boundary
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 310
EP  - 345
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a3/
LA  - en
ID  - IM2_2012_76_2_a3
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Blow-up of ion-sound waves in plasma with non-linear sources on the boundary
%J Izvestiya. Mathematics 
%D 2012
%P 310-345
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a3/
%G en
%F IM2_2012_76_2_a3
M. O. Korpusov. Blow-up of ion-sound waves in plasma with non-linear sources on the boundary. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 310-345. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a3/

[1] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998 | Zbl

[2] A. B. Al'shin, Yu. D. Pletner, A. G. Sveshnikov, “Unique solvability of the Dirichlet problem for the ion-sound wave equation in plasma”, Dokl. Math., 58:1 (1998), 148–150 | MR | Zbl

[3] E. Mitidieri, S. I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl

[4] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+ \mathcal F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[5] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathcal{F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[6] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl | Zbl

[7] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl

[8] V. A. Galaktionov, S. I. Pohozaev, “Third-order nonlinear dispersive equations: shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl

[9] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[10] M. O. Korpusov, A. G. Sveshnikov, “Blow-up of Oskolkov's system of equations”, Sb. Math., 200:4 (2009), 549–572 | DOI | MR | Zbl

[11] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[12] C. Baiocchi, A. Capelo, Variational and quasivariational inequalities. Applications to free boundary problems, Wiley, Chichester, 1984 | MR | MR | Zbl | Zbl

[13] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, 1964 | MR | Zbl | Zbl

[14] L. Gasiński, N. S. Papageorgiou, Nonlinear analisys, Ser. Math. Anal. Appl., 9, Chapman Hall, Boca Raton, FL, 2006 | DOI | MR | Zbl