Oscillation and wandering characteristics of solutions of a~linear differential system
Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 139-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce new Lyapunov characteristics for the oscillation and wandering of solutions of linear differential equations or systems, namely, the frequency of a solution (the mean number of zeros on the time axis), of some coordinate of the solution, or of all possible linear combinations of these coordinates, and also the mean angular velocity of the rotation of a solution (about the origin in the phase space) and various wandering exponents (derived from the mean angular velocity). We shall show that the sets of values of all these quantities on the solutions of a linear autonomous system coincide with the set of absolute values of the imaginary parts of eigenvalues of the matrix of the system. We shall see that the frequencies of solutions are bounded above by their wandering exponents, and the frequencies and wandering exponents of all solutions of an arbitrary second-order equation coincide.
Keywords: differential equation, linear system, oscillation and wandering, Lyapunov exponent.
Mots-clés : zeros of solutions
@article{IM2_2012_76_1_a5,
     author = {I. N. Sergeev},
     title = {Oscillation and wandering characteristics of solutions of a~linear differential system},
     journal = {Izvestiya. Mathematics },
     pages = {139--162},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a5/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Oscillation and wandering characteristics of solutions of a~linear differential system
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 139
EP  - 162
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a5/
LA  - en
ID  - IM2_2012_76_1_a5
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Oscillation and wandering characteristics of solutions of a~linear differential system
%J Izvestiya. Mathematics 
%D 2012
%P 139-162
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a5/
%G en
%F IM2_2012_76_1_a5
I. N. Sergeev. Oscillation and wandering characteristics of solutions of a~linear differential system. Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 139-162. http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a5/

[1] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2004

[2] I. N. Sergeev, “Definition and properties of characteristic frequencies of a linear equation”, J. Math. Sci. (N. Y.), 135:1 (2006), 2764–2793 | DOI | MR | Zbl

[3] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR | Zbl

[4] N. A. Izobov, Vvedenie v teoriyu pokazatelei Lyapunova, Izd-vo BGU, Minsk, 2006

[5] V. M. Millionshchikov, “Birov classes of functions and Lyapunov indices. I”, Differ. Equ., 16 (1981), 902–907 | MR | Zbl

[6] A. M. Lyapunov, The general problem of the stability of motion, Taylor Francis, London, 1992 | MR | MR | Zbl | Zbl

[7] I. N. Sergeev, “Definition of characteristic frequencies of a linear equation”, Differ. Equ., 40:11 (2004), 1657–1658 | DOI | Zbl

[8] I. N. Sergeev, “Movability of the characteristic frequencies of a linear equation under uniformly small and infinitely small perturbations”, Differ. Equ., 40:11 (2004), 1661 | DOI | Zbl

[9] I. N. Sergeev, “Determination of complete frequencies of solutions of a linear equation”, Differ. Equ., 44:11 (2008), 1639–1640 | DOI | Zbl

[10] I. N. Sergeev, “Determination of complete frequencies of solutions of a linear system”, Differ. Equ., 45:6 (2009), 927–928 | DOI

[11] I. N. Sergeev, “Determining the wandering characteristics of solutions of a linear system”, Differ. Equ., 46:6 (2010), 1639–1640 | DOI | Zbl

[12] I. N. Sergeev, “Comparison of complete frequencies and wandering exponents of solutions of a linear system”, Differ. Equ., 46:11 (2010), 1669–1670 | DOI | Zbl

[13] I. N. Sergeev, “Kharakteristiki koleblemosti lyapunovskogo tipa”, Mezhdunarodnaya matematicheskaya konferentsiya “Pyatye Bogdanovskie chteniya po obyknovennym differentsialnym uravneniyam”, In-t matematiki NAN Belarusi, Minsk, 2010, 73–74

[14] I. N. Sergeev, “Complex characteristic exponents of exponentially separated systems”, Differ. Equ., 47:6 (2011), 907–908 | DOI

[15] I. N. Sergeev, “Oscillation and wandering of solutions of linear differential equations of small order”, Differ. Equ., 47:6 (2011), 915–916 | DOI

[16] I. N. Sergeev, “Raspredelenie polnykh chastot i pokazatelei bluzhdaemosti v prostranstve reshenii lineinoi avtonomnoi sistemy”, Mezhdunarodnaya konferentsiya, posvyaschennaya 110-i godovschine I. G. Petrovskogo (XXIII sovmestnoe zasedanie MMO i seminara im. I. G. Petrovskogo), Izd-vo MGU, M., 2011, 342–343

[17] V. A. Zorich, Mathematical analysis, v. II, Universitext, Springer-Verlag, Berlin, 2004 | MR | MR | Zbl | Zbl