Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_1_a4, author = {V. A. Krasnov}, title = {Cohomology of real three-dimensional triquadrics}, journal = {Izvestiya. Mathematics }, pages = {113--138}, publisher = {mathdoc}, volume = {76}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a4/} }
V. A. Krasnov. Cohomology of real three-dimensional triquadrics. Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 113-138. http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a4/
[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077v2
[2] O. Ja. Viro, “Curves of degree 7, curves of degree 8, and the Ragsdale conjecture”, Soviet Math. Dokl., 22:2 (1980), 566–570 | MR | Zbl
[3] O. Ja. Viro, “Plane real curves of degrees 7 and 8: New restrictions”, Math. USSR-Izv., 23:2 (1984), 409–422 | DOI | MR | Zbl
[4] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl
[5] A. C. Dixon, “Note on the reduction of a ternary quantic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl
[6] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl | Zbl
[7] I. V. Dolgachev, Topics in classical algebraic geometry. I, www.math.lsa.umich.edu/~idolga/topics.pdf
[8] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl
[9] V. A. Krasnov, “On the number of components of a three-dimensional maximal intersection of three real quadrics”, Izv. Math., 75:3 (2011), 589–602 | DOI | Zbl
[10] M. F. Atiyah, “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | MR | Zbl
[11] D. Mumford, “Theta characteristics of an algebraic curve”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 181–192 | MR | Zbl
[12] S. M. Natanzon, Moduli of Riemann surfaces, real algebraic curves, and their superanalogs, Transl. Math. Monogr., 225, Amer. Math. Soc., Providence, RI, 2004 | MR | MR | Zbl | Zbl
[13] Y. I. Manin, “Le groupe de Brauer–Grothendieck en géométrie diophantienne”, Actes du Congrès International des Mathématiciens (Nice, 1970), Ganthcer-Villars, Paris, 1971, 401–411 | MR | Zbl
[14] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl
[15] V. Vinnikov, “Self-adjoint determinantal representations of real plane curves”, Math. Ann., 296:3 (1983), 453–479 | DOI | MR | Zbl
[16] E. Brugallé, “Symmetric plane curves of degree 7: pseudoholomorphic and algebraic classifications”, J. Reine Angew. Math., 612 (2007), 129–171 | DOI | MR | Zbl
[17] E. Brugallé, Courbes algébriques réelles et courbes pseudoholomorphes réelles dans les surfaces réglées, /www.math.jussieu.fr/~brugalle/articles/Thesis/These.pdf
[18] V. Florens, “Signatures of colored links with application to real algebraic curves”, J. Knot Theory Ramifications, 14:7 (2005), 883–918 | DOI | MR | Zbl
[19] V. A. Krasnov, “Maximal intersections of three real quadrics”, Izv. Math., 75:3 (2011), 569–587 | DOI | Zbl
[20] M. F. Atiyah, $K$-theory, Benjamin, New York–Amsterdam, 1967 | MR | MR | Zbl | Zbl