Cohomology of real three-dimensional triquadrics
Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 113-138

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-singular intersections of three real five-dimensional quadrics. They are referred to for brevity as real three-dimensional triquadrics. We calculate the dimensions of the cohomology spaces of triquadrics with coefficients in the field of two elements.
Keywords: spectral curve, spectral bundle, index function, theta characteristic.
Mots-clés : triquadric, index scheme, index orientation
@article{IM2_2012_76_1_a4,
     author = {V. A. Krasnov},
     title = {Cohomology of real three-dimensional triquadrics},
     journal = {Izvestiya. Mathematics },
     pages = {113--138},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Cohomology of real three-dimensional triquadrics
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 113
EP  - 138
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a4/
LA  - en
ID  - IM2_2012_76_1_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Cohomology of real three-dimensional triquadrics
%J Izvestiya. Mathematics 
%D 2012
%P 113-138
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a4/
%G en
%F IM2_2012_76_1_a4
V. A. Krasnov. Cohomology of real three-dimensional triquadrics. Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 113-138. http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a4/