On the convexity of $N$-Chebyshev sets
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 889-914

Voir la notice de l'article provenant de la source Math-Net.Ru

We define $N$-Chebyshev sets in a Banach space $X$ for every positive integer $N$ (when $N=1$, these are ordinary Chebyshev sets) and study conditions that guarantee their convexity. In particular, we prove that all $N$-Chebyshev sets are convex when $N$ is even and $X$ is uniformly convex or $N\geqslant 3$ is odd and $X$ is smooth uniformly convex.
Keywords: Chebyshev set, convexity problem.
@article{IM2_2011_75_5_a1,
     author = {P. A. Borodin},
     title = {On the convexity of $N${-Chebyshev} sets},
     journal = {Izvestiya. Mathematics },
     pages = {889--914},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - On the convexity of $N$-Chebyshev sets
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 889
EP  - 914
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/
LA  - en
ID  - IM2_2011_75_5_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T On the convexity of $N$-Chebyshev sets
%J Izvestiya. Mathematics 
%D 2011
%P 889-914
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/
%G en
%F IM2_2011_75_5_a1
P. A. Borodin. On the convexity of $N$-Chebyshev sets. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 889-914. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/