On the convexity of $N$-Chebyshev sets
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 889-914.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define $N$-Chebyshev sets in a Banach space $X$ for every positive integer $N$ (when $N=1$, these are ordinary Chebyshev sets) and study conditions that guarantee their convexity. In particular, we prove that all $N$-Chebyshev sets are convex when $N$ is even and $X$ is uniformly convex or $N\geqslant 3$ is odd and $X$ is smooth uniformly convex.
Keywords: Chebyshev set, convexity problem.
@article{IM2_2011_75_5_a1,
     author = {P. A. Borodin},
     title = {On the convexity of $N${-Chebyshev} sets},
     journal = {Izvestiya. Mathematics },
     pages = {889--914},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - On the convexity of $N$-Chebyshev sets
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 889
EP  - 914
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/
LA  - en
ID  - IM2_2011_75_5_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T On the convexity of $N$-Chebyshev sets
%J Izvestiya. Mathematics 
%D 2011
%P 889-914
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/
%G en
%F IM2_2011_75_5_a1
P. A. Borodin. On the convexity of $N$-Chebyshev sets. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 889-914. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/

[1] N. V. Efimov, S. B. Stechkin, “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | MR | Zbl

[2] L. P. Vlasov, “Approximative properties of sets in normed linear spaces”, Russian Math. Surveys, 28:6 (1973), 1–66 | DOI | MR | Zbl | Zbl

[3] V. S. Balaganskii, L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Russian Math. Surveys, 51:6 (1996), 1127–1190 | DOI | MR | Zbl

[4] M. I. Karlov, I. G. Tsarkov, “Vypuklost i svyaznost chebyshevskikh mnozhestv i solnts”, Fundament. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl

[5] A. R. Alimov, “Vsyakoe li chebyshevskoe mnozhestvo vypuklo?”, Matem. prosv., ser. 3, 1998, no. 2, 155–172

[6] P. A. Borodin, “Convexity of 2-Chebyshev sets in a Hilbert space”, Moscow Univ. Math. Bull., 63:3 (2008), 96–98 | MR | Zbl

[7] A. Brøndsted, “Convex sets and Chebyshev sets”, Math. Scand., 17:1 (1965), 5–16 | MR | Zbl

[8] A. R. Alimov, “Chebyshevskie mnozhestva v lineinykh prostranstvakh s nesimmetrichnoi sferoi”, Teoriya funktsii i priblizhenii, Tr. 7-i Saratovskoi zimnei shkoly, posvyaschennoi pamyati prof. A. A. Privalova, Saratov, 1995, 91–93

[9] A. R. Alimov, “Convexity of Chebyshev sets contained in a subspace”, Math. Notes, 78:1 (2005), 3–13 | DOI | MR | Zbl

[10] L. P. Vlasov, “Chebyshev sets and approximately convex sets”, Math. Notes, 2:2 (1967), 600–605 | DOI | MR | Zbl

[11] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1988 | MR | MR | Zbl

[12] G. Sh. Rubinshtein, “Ob odnoi ekstremalnoi zadache v lineinom normirovannom prostranstve”, Sib. matem. zhurn., 6:3 (1965), 711–714 | MR | Zbl

[13] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl

[14] Th. Motzkin, “Sur quelques propriétés caractéristiques des ensembles convexes”, Rend. Accad. Naz. Lincei, 21 (1935), 562–567 | Zbl

[15] L. P. Vlasov, “Chebyshev sets and some generalizations of them”, Math. Notes, 3:1 (1968), 36–41 | DOI | MR | Zbl | Zbl

[16] J. Diestel, Geometry of Banach spaces-selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–New York, 1975 | MR | MR | Zbl | Zbl

[17] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems, Amer. Math. Soc., Providence, RI, 1977 | MR | MR | Zbl | Zbl

[18] E. M. Zaustinsky, Spaces with non-symmetric distance, Mem. Amer. Math. Soc., 34, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl

[19] P. A. Borodin, “The Banach–Mazur theorem for spaces with asymmetric norm”, Math. Notes, 69:3 (2001), 298–305 | DOI | MR | Zbl

[20] S. B. Stechkin, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Acad. Republ. Popul. Roum., Rev. Math. Pur. Appl., 8:1 (1963), 5–18 | MR | Zbl

[21] C. B. Dunham, “Chebyshev sets in $C[0,1]$ which are not suns”, Canad. Math. Bull., 18:1 (1975), 35–37 | DOI | MR | Zbl