On the convexity of $N$-Chebyshev sets
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 889-914
Voir la notice de l'article provenant de la source Math-Net.Ru
We define $N$-Chebyshev sets in a Banach space $X$ for every positive integer $N$ (when $N=1$, these are ordinary Chebyshev sets) and study conditions that guarantee their convexity. In particular, we prove that all $N$-Chebyshev sets are convex when $N$ is even and $X$ is uniformly convex or $N\geqslant 3$ is odd and $X$ is smooth uniformly convex.
Keywords:
Chebyshev set, convexity problem.
@article{IM2_2011_75_5_a1,
author = {P. A. Borodin},
title = {On the convexity of $N${-Chebyshev} sets},
journal = {Izvestiya. Mathematics },
pages = {889--914},
publisher = {mathdoc},
volume = {75},
number = {5},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/}
}
P. A. Borodin. On the convexity of $N$-Chebyshev sets. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 889-914. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a1/