On the orbit space of a three-dimensional compact linear Lie group
Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 815-836.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the question of whether the topological quotient of a real linear representation of a simple three-dimensional compact Lie group is a manifold. We obtain an upper bound for the dimension of a representation whose quotient is a manifold, and examine most of the remaining cases.
Keywords: topological quotient of an action.
Mots-clés : Lie group
@article{IM2_2011_75_4_a5,
     author = {O. G. Styrt},
     title = {On the orbit space of a three-dimensional compact linear {Lie} group},
     journal = {Izvestiya. Mathematics },
     pages = {815--836},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a5/}
}
TY  - JOUR
AU  - O. G. Styrt
TI  - On the orbit space of a three-dimensional compact linear Lie group
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 815
EP  - 836
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a5/
LA  - en
ID  - IM2_2011_75_4_a5
ER  - 
%0 Journal Article
%A O. G. Styrt
%T On the orbit space of a three-dimensional compact linear Lie group
%J Izvestiya. Mathematics 
%D 2011
%P 815-836
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a5/
%G en
%F IM2_2011_75_4_a5
O. G. Styrt. On the orbit space of a three-dimensional compact linear Lie group. Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 815-836. http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a5/

[1] O. G. Styrt, “On the orbit space of a compact linear Lie group with commutative connected component”, Trans. Moscow Math. Soc., 2009, 171–206 | DOI | MR | Zbl