Harmonic analysis on local fields and adelic spaces. II
Izvestiya. Mathematics, Tome 75 (2011) no. 4, pp. 749-814 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop harmonic analysis in certain categories of filtered Abelian groups and vector spaces. The objects of these categories include local fields and adelic spaces arising from arithmetic surfaces. We prove some structure theorems for quotients of the adèle groups of algebraic and arithmetic surfaces.
Keywords: arithmetic surfaces, harmonic analysis
Mots-clés : higher adèles, Fourier transform, Poisson summation formulae.
@article{IM2_2011_75_4_a4,
     author = {D. V. Osipov and A. N. Parshin},
     title = {Harmonic analysis on local fields and adelic spaces. {II}},
     journal = {Izvestiya. Mathematics},
     pages = {749--814},
     year = {2011},
     volume = {75},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a4/}
}
TY  - JOUR
AU  - D. V. Osipov
AU  - A. N. Parshin
TI  - Harmonic analysis on local fields and adelic spaces. II
JO  - Izvestiya. Mathematics
PY  - 2011
SP  - 749
EP  - 814
VL  - 75
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a4/
LA  - en
ID  - IM2_2011_75_4_a4
ER  - 
%0 Journal Article
%A D. V. Osipov
%A A. N. Parshin
%T Harmonic analysis on local fields and adelic spaces. II
%J Izvestiya. Mathematics
%D 2011
%P 749-814
%V 75
%N 4
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a4/
%G en
%F IM2_2011_75_4_a4
D. V. Osipov; A. N. Parshin. Harmonic analysis on local fields and adelic spaces. II. Izvestiya. Mathematics, Tome 75 (2011) no. 4, pp. 749-814. http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a4/

[1] D. V. Osipov, A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. I”, Izv. Math., 72:5 (2008), 915–976 | DOI | MR | Zbl

[2] D. Osipov, “Adeles on $n$-dimensional schemes and categories $C_n$”, Intern. J. Math., 18:3 (2007), 269–279 | DOI | MR | Zbl

[3] M. M. Kapranov, Semiinfinite symmetric powers, arXiv: math/0107089

[4] A. N. Parshin, “Integrable systems and local fields”, Comm. Algebra, 29:9 (2001), 4157–4181 | DOI | MR | Zbl

[5] D. Kazhdan, “Fourier transform over local fields”, Milan J. Math., 74:1 (2006), 213–225 | DOI | MR | Zbl

[6] A. N. Parshin, “On holomorphic representations of discrete Heisenberg groups”, Funct. Anal. Appl., 44:2 (2010), 156–159 | DOI | MR | Zbl

[7] A. A. Beilinson, “Residues and adeles”, Funct. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl

[8] A. Huber, “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61:1 (1991), 249–273 | DOI | MR | Zbl

[9] T. Fimmel, A. N. Parshin, An introduction to the higher adelic theory, Preprint, 1999

[10] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2007, 131–164 | MR | Zbl

[11] N. Bourbaki, Éléments de mathématique. Fasc. XXXII: Théories spectrales, Hermann, Paris, 1967 | MR | MR | Zbl | Zbl

[12] Algebraic number theory, ed. J. W. S. Cassels, A. Fröhlich, Academic Press, London, 1967 | MR | MR | Zbl

[13] F. Bruhat, “Sur les représentations induites des groupes de Lie”, Bull. Soc. Math. France, 84 (1956), 97–205 | MR | Zbl

[14] L. Schwartz, Théorie des distributions, v. II, Hermann, Paris, 1959 | MR | Zbl

[15] A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Math., 53, Cambridge Univ. Press, Cambridge, 1964 | MR | MR | Zbl | Zbl

[16] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964 | MR | MR | Zbl

[17] F. Bruhat, “Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes $p$-adiques”, Bull. Soc. Math. France, 89 (1961), 43–75 | MR | Zbl

[18] A. N. Parshin, “The Krichever correspondence for algebraic surfaces”, Funct. Anal. Appl., 35:1 (2001), 74–76 | DOI | MR | Zbl

[19] A. N. Parshin, “Numbers as functions: the development of an idea in the Moscow school of algebraic geometry”, Mathematical events of the twentieth century, Springer-Verlag, Berlin, 297–329 | MR | Zbl