Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_4_a2, author = {M. O. Korpusov}, title = {On the blow-up of internal gravitational waves with non-linear sources}, journal = {Izvestiya. Mathematics }, pages = {691--710}, publisher = {mathdoc}, volume = {75}, number = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a2/} }
M. O. Korpusov. On the blow-up of internal gravitational waves with non-linear sources. Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 691-710. http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a2/
[1] V. V. Bulatov, Yu. V. Vladimirov, Vnutrennie gravitatsionnye volny v neodnorodnykh sredakh, Nauka, M., 2005 | MR
[2] S. A. Gabov, A. G. Sveshnikov, Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR | Zbl
[3] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Monogr. Textbooks Pure Appl. Math., 256, Marcel Dekker, New York, 2003 | MR | MR | Zbl | Zbl
[4] N. D. Kopachevskii, S. G. Krein, Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike, Nauka, M., 1989 | MR | Zbl
[5] Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial boundary-value problems”, Comput. Math. Math. Phys., 32:12 (1992), 1715–1728 | MR | Zbl
[6] V. A. Borovikov, “Asymptotic expansion of the Green function of an internal-wave equation for $t\to \infty$”, J. Applied and Technical Physics, 37:4 (1996), 606–614 | DOI | MR | Zbl
[7] L. V. Ovsyannikov, V. N. Monakhov, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985 | MR | Zbl
[8] K. R. Helfrich, W. K. Melville, “Long nonlinear internal waves”, Annu. Rev. Fluid Mech., 38 (2006), 395–425 | DOI | MR | Zbl
[9] E. Mitidieri, S. I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl
[10] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathscr F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl
[11] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl
[12] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl | Zbl
[13] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl
[14] V. A. Galaktionov, S. I. Pohozaev, “Third-order nonlinear dispersive equations: shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl
[15] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl
[16] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauchnyi Mir, M., 2008
[17] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, 1964 | MR | Zbl | Zbl
[18] L. Gasiński, N. S. Papageorgiou, Nonlinear analysis, Ser. Math. Anal. Appl., 9, Chapman and Hall, Boca Raton, FL, 2006 | MR | Zbl
[19] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl