On the blow-up of internal gravitational waves with non-linear sources
Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 691-710.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equation of internal gravitational waves in a stratified fluid in which non-linear sources of a general form are taken into account. In the case of the corresponding initial-boundary-value problem in a bounded domain with homogeneous Dirichlet conditions on the boundary, we prove the local-in-time solubility and also obtain sufficient conditions for the blow-up of a solution in finite time.
Keywords: blow-up, non-linear initial-boundary-value problem, internal waves, equation of Sobolev type.
@article{IM2_2011_75_4_a2,
     author = {M. O. Korpusov},
     title = {On the blow-up of internal gravitational waves with non-linear sources},
     journal = {Izvestiya. Mathematics },
     pages = {691--710},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a2/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - On the blow-up of internal gravitational waves with non-linear sources
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 691
EP  - 710
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a2/
LA  - en
ID  - IM2_2011_75_4_a2
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T On the blow-up of internal gravitational waves with non-linear sources
%J Izvestiya. Mathematics 
%D 2011
%P 691-710
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a2/
%G en
%F IM2_2011_75_4_a2
M. O. Korpusov. On the blow-up of internal gravitational waves with non-linear sources. Izvestiya. Mathematics , Tome 75 (2011) no. 4, pp. 691-710. http://geodesic.mathdoc.fr/item/IM2_2011_75_4_a2/

[1] V. V. Bulatov, Yu. V. Vladimirov, Vnutrennie gravitatsionnye volny v neodnorodnykh sredakh, Nauka, M., 2005 | MR

[2] S. A. Gabov, A. G. Sveshnikov, Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR | Zbl

[3] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Monogr. Textbooks Pure Appl. Math., 256, Marcel Dekker, New York, 2003 | MR | MR | Zbl | Zbl

[4] N. D. Kopachevskii, S. G. Krein, Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike, Nauka, M., 1989 | MR | Zbl

[5] Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial boundary-value problems”, Comput. Math. Math. Phys., 32:12 (1992), 1715–1728 | MR | Zbl

[6] V. A. Borovikov, “Asymptotic expansion of the Green function of an internal-wave equation for $t\to \infty$”, J. Applied and Technical Physics, 37:4 (1996), 606–614 | DOI | MR | Zbl

[7] L. V. Ovsyannikov, V. N. Monakhov, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985 | MR | Zbl

[8] K. R. Helfrich, W. K. Melville, “Long nonlinear internal waves”, Annu. Rev. Fluid Mech., 38 (2006), 395–425 | DOI | MR | Zbl

[9] E. Mitidieri, S. I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl

[10] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathscr F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[11] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[12] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl | Zbl

[13] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl

[14] V. A. Galaktionov, S. I. Pohozaev, “Third-order nonlinear dispersive equations: shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl

[15] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[16] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauchnyi Mir, M., 2008

[17] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, 1964 | MR | Zbl | Zbl

[18] L. Gasiński, N. S. Papageorgiou, Nonlinear analysis, Ser. Math. Anal. Appl., 9, Chapman and Hall, Boca Raton, FL, 2006 | MR | Zbl

[19] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl