On uniform constants of strong uniqueness in Chebyshev approximations and fundamental results of N.~G.~Chebotarev
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 603-630.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the problem of the best uniform approximation of a continuous real-valued function $f\in C(Q)$ in a finite-dimensional Chebyshev subspace $M\subset C(Q)$, where $Q$ is a compactum, one studies the positivity of the uniform strong uniqueness constant $\gamma(N)=\inf\{\gamma(f)\colon f\in N\}$. Here $\gamma(f)$ stands for the strong uniqueness constant of an element $f_M\in M$ of best approximation of $f$, that is, the largest constant $\gamma>0$ such that the strong uniqueness inequality $\|f-\varphi\|\geqslant\|f-f_M\|+\gamma\|f_M-\varphi\|$ holds for any $\varphi\in M$. We obtain a characterization of the subsets $N\subset C(Q)$ for which there is a neighbourhood $O(N)$ of $N$ satisfying the condition $\gamma(O(N))>0$. The pioneering results of N. G. Chebotarev were published in 1943 and concerned the sharpness of the minimum in minimax problems and the strong uniqueness of algebraic polynomials of best approximation. They seem to have been neglected by the specialists, and we discuss them in detail.
Keywords: Chebyshev approximation, Chebyshev subspaces, strong uniqueness, sharp minimum, uniform strong uniqueness constants.
@article{IM2_2011_75_3_a6,
     author = {A. V. Marinov},
     title = {On uniform constants of strong uniqueness in {Chebyshev} approximations and fundamental results of {N.~G.~Chebotarev}},
     journal = {Izvestiya. Mathematics },
     pages = {603--630},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a6/}
}
TY  - JOUR
AU  - A. V. Marinov
TI  - On uniform constants of strong uniqueness in Chebyshev approximations and fundamental results of N.~G.~Chebotarev
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 603
EP  - 630
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a6/
LA  - en
ID  - IM2_2011_75_3_a6
ER  - 
%0 Journal Article
%A A. V. Marinov
%T On uniform constants of strong uniqueness in Chebyshev approximations and fundamental results of N.~G.~Chebotarev
%J Izvestiya. Mathematics 
%D 2011
%P 603-630
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a6/
%G en
%F IM2_2011_75_3_a6
A. V. Marinov. On uniform constants of strong uniqueness in Chebyshev approximations and fundamental results of N.~G.~Chebotarev. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 603-630. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a6/

[1] D. J. Newman, H. S. Shapiro, “Some theorems on Čebyšev approximation”, Duke Math. J., 30:4 (1963), 673–681 | DOI | MR | Zbl

[2] A. K. Cline, “Lipschitz conditions on uniform approximation operators”, J. Approximation Theory, 8:2 (1973), 160–172 | DOI | MR | Zbl

[3] M. Bartelt, “On Lipschitz conditions, strong unicity and a theorem of A. K. Cline”, J. Approximation Theory, 14:4 (1975), 245–250 | DOI | MR | Zbl

[4] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR | Zbl

[5] E. W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966 | MR | Zbl

[6] L. Collatz, W. Krabs, Approximationstheorie. Tschebyscheffsche Approximation mit Anwendungen, Teubner, Stuttgart, 1973 | MR | MR | Zbl

[7] A. V. Marinov, “Ravnomernye konstanty silnoi edinstvennosti pri approksimatsii konechnomernym chebyshevskim podprostranstvom”, Teoriya priblizhenii i garmonicheskii analiz. Mezhdunar. konf. (Tula, 1998), 1998, 169–170

[8] N. G. Chebotarev, “Ob odnom kriterii minimaksa”, Dokl. AN SSSR, 39:9 (1943), 373–376 | MR | Zbl

[9] N. G. Chebotarev, Sobranie sochinenii, v. 2, Izd-vo AN SSSR, M., 1949 | MR

[10] A. V. Marinov, “The positivity of uniform constants of strong unicity and the Steinitz theorem on the interior of a convex hull in $\mathbb{R}^n$”, Topology, mathematical control theory and differential equations, approximation theory, Proc. Steclov Inst. Math., Suppl. 1, Maik, Moscow, 2004, 158–182 | MR | Zbl

[11] D. Wulbert, “Uniqueness and differential characterization of approximations from manifolds of functions”, Amer. J. Math., 93:2 (1971), 350–366 | DOI | MR | Zbl

[12] M. W. Bartelt, H. W. McLaughlin, “Characterizations of strong unicity in approximation theory”, J. Approximation Theory, 9:3 (1973), 255–266 | DOI | MR | Zbl

[13] G. Nürnberger, “Unicity and strong unicity in approximation theory”, J. Approx. Theory, 26:1 (1979), 54–70 | DOI | MR | Zbl

[14] G. Nürnberger, “Global unicity in semi-infinite optimization”, Numer. Funct. Anal. Optim., 8:1–2 (1985), 173–191 | DOI | MR | Zbl

[15] B. Brosowski, “A refinement of the Kolmogorov criterion”, Constructive function theory (Varna, Bulgaria, 1981), Bulgar. Acad. Sci., Sofia, 1983, 241–247 | MR | Zbl

[16] H.-P. Blatt, “Exchange algorithms, error estimations and strong unicity in convex programming and Chebyshev approximation”, Approximation theory and spline functions (St. John's, Newfoundland, 1983), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 136, Reidel, Dordrecht, 1984, 23–63 | MR | Zbl

[17] H.-P. Blatt, “Characterization of strong unicity in semi-infinite optimization by chain of references”, Parametric optimization and approximation (Oberwolfach, 1983), Internat. Schriftenreihe Numer. Math., 72, Birkhäuser, Basel, 1985, 36–46 | MR | Zbl

[18] Ch. B. Dunham, “A uniform constant of strong uniqueness on an interval”, J. Approx. Theory, 28:3 (1980), 207–211 | DOI | MR | Zbl

[19] A. V. Marinov, “Constants of strong uniqueness for best uniform approximations on compacta”, Math. Notes, 34:1 (1983), 499–507 | DOI | MR | Zbl | Zbl

[20] M. S. Henry, D. Schmidt, “Continuity theorems for the product approximation operator”, Theory of approximation, with applications (Calgary, Canada, 1975), Academic Press, New York, 1976, 24–42 | MR | Zbl

[21] A. Kroó, “The continuity of best approximations”, Acta Math. Acad. Sci. Hungar., 30:1–2 (1977), 175–188 | DOI | MR | Zbl

[22] S. O. Paur, J. A. Roulier, “Continuity and strong unicity of the best approximation operator on subintervals”, J. Approx. Theory, 32:3 (1981), 247–255 | DOI | MR | Zbl

[23] M. S. Henry, D. Schmidt, J. J. Swetits, “Uniform strong unicity for rational approximation”, J. Approx. Theory, 33:2 (1981), 131–146 | DOI | MR | Zbl

[24] Ch. Li, “Uniform strong unicity for simultaneous rational Chebyshev approximation”, Acta Math. Sinica, 35:4 (1992), 460–471 | MR | Zbl

[25] Y. Xing, “Uniform strong unicity for approximation by reciprocals of polynomials on $[0,1)$”, Adv. in Math. (Beijing), 17:1 (1988), 72–78 | MR | Zbl

[26] G. Nürnberger, “Unicity in semi-infinite optimization”, Parametric optimization and approximation (Oberwolfach, 1983), Internat. Schriftenreihe Numer. Math., 72, Birkhäuser, Basel, 1985, 231–247 | MR | Zbl

[27] G. Nürnberger, “Strong unicity in nonlinear parametric optimization”, Parametric optimization and related topics (Plaue, 1985), Math. Res., 35, Akademie-Verlag, Berlin, 1987, 316–326 | MR | Zbl

[28] M. Bartelt, “Hausdorff strong unicity in vector-valued Chebyshev approximation on finite sets”, Trends in approximation theory (Nashville, TX, USA, 2000), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2001, 31–38 | MR | Zbl

[29] M. W. Bartelt, J. J. Swetits, “Uniform strong unicity of order 2 for generalized Haar sets”, Approximation theory (St. Louis, MO, USA, 2001), v. X, Innov. Appl. Math., Abstract and classical analysis, Vanderbilt Univ. Press, Nashville, TN, 2002, 23–30 | MR | Zbl

[30] M. Bartelt, E. H. Kaufman, jr., J. Swetits, “Uniform Lipschitz constants in Chebyshev polynomial approximation”, J. Approx. Theory, 62:1 (1990), 23–38 | DOI | MR | Zbl

[31] M. Bartelt, J. Swetits, “Uniform strong unicity constants for subsets of $C(X)$”, J. Approx. Theory, 55:3 (1988), 304–317 | DOI | MR | Zbl

[32] A. V. Marinov, Nepreryvnost metricheskoi proektsii, Dis. ... kand. fiz.-matem. nauk, IMM UrO AN SSSR, Sverdlovsk, 1989

[33] S. N. Bernshtein, Ekstremalnye svoistva polinomov, Ch. 1, Gostekhizdat, M.–L., 1937

[34] P. V. Galkin, “On the modulus of continuity of the operator of best approximation in the space of continuous functions”, Math. Notes, 10:6 (1972), 790–798 | MR | Zbl | Zbl

[35] P.-J. Laurent, Approximation et optimisation, Hermann, Paris, 1972 | MR | Zbl

[36] M. S. Henry, J. A. Roulier, “Lipschitz and strong unicity constants for changing dimension”, J. Approximation Theory, 22:1 (1978), 85–94 | DOI | MR | Zbl