Maximal intersections of three real quadrics
Izvestiya. Mathematics, Tome 75 (2011) no. 3, pp. 569-587 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider real algebraic varieties that are intersections of three real quadrics. For brevity they are referred to as real triquadrics. We construct triquadrics that are $M$-varieties and calculate the cohomology groups of the real parts of such triquadrics with coefficients in the field of two elements using relations between triquadrics and plane curves.
Keywords: maximal varieties, theta-characteristics, spectral curve.
Mots-clés : triquadrics
@article{IM2_2011_75_3_a4,
     author = {V. A. Krasnov},
     title = {Maximal intersections of three real quadrics},
     journal = {Izvestiya. Mathematics},
     pages = {569--587},
     year = {2011},
     volume = {75},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Maximal intersections of three real quadrics
JO  - Izvestiya. Mathematics
PY  - 2011
SP  - 569
EP  - 587
VL  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/
LA  - en
ID  - IM2_2011_75_3_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Maximal intersections of three real quadrics
%J Izvestiya. Mathematics
%D 2011
%P 569-587
%V 75
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/
%G en
%F IM2_2011_75_3_a4
V. A. Krasnov. Maximal intersections of three real quadrics. Izvestiya. Mathematics, Tome 75 (2011) no. 3, pp. 569-587. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/

[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077v2

[2] V. V. Nikulin, “On the connected components of moduli of real polarized $ \mathrm K3$-surfaces”, Izv. Math., 72:1 (2008), 91–111 | DOI | MR | Zbl

[3] I. V. Dolgachev, Topics in classical algebraic geometry. I, www.math.lsa.umich.edu/~idolga/topics.pdf

[4] A. C. Dixon, “Note on the reduction of a ternary quantic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl

[5] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[6] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[7] V. A. Krasnov, “Characteristic classes of vector bundles on a real algebraic variety”, Math. USSR-Izv., 39:1 (1992), 703–730 | DOI | MR | Zbl | Zbl

[8] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966 | MR | Zbl | Zbl

[9] V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | MR | Zbl

[10] C. H. Clemens, A scrapbook of complex curve theory, Plenum, New York–London, 1980 | MR | MR | Zbl | Zbl