Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_3_a4, author = {V. A. Krasnov}, title = {Maximal intersections of three real quadrics}, journal = {Izvestiya. Mathematics }, pages = {569--587}, publisher = {mathdoc}, volume = {75}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/} }
V. A. Krasnov. Maximal intersections of three real quadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 569-587. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/
[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077v2
[2] V. V. Nikulin, “On the connected components of moduli of real polarized $ \mathrm K3$-surfaces”, Izv. Math., 72:1 (2008), 91–111 | DOI | MR | Zbl
[3] I. V. Dolgachev, Topics in classical algebraic geometry. I, www.math.lsa.umich.edu/~idolga/topics.pdf
[4] A. C. Dixon, “Note on the reduction of a ternary quantic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl
[5] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl
[6] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl
[7] V. A. Krasnov, “Characteristic classes of vector bundles on a real algebraic variety”, Math. USSR-Izv., 39:1 (1992), 703–730 | DOI | MR | Zbl | Zbl
[8] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966 | MR | Zbl | Zbl
[9] V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | MR | Zbl
[10] C. H. Clemens, A scrapbook of complex curve theory, Plenum, New York–London, 1980 | MR | MR | Zbl | Zbl