Maximal intersections of three real quadrics
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 569-587
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider real algebraic varieties that are intersections of three real
quadrics. For brevity they are referred to as real triquadrics. We construct
triquadrics that are $M$-varieties and calculate the cohomology groups
of the real parts of such triquadrics with coefficients in the field of two
elements using relations between triquadrics and plane curves.
Keywords:
maximal varieties, theta-characteristics, spectral curve.
Mots-clés : triquadrics
Mots-clés : triquadrics
@article{IM2_2011_75_3_a4,
author = {V. A. Krasnov},
title = {Maximal intersections of three real quadrics},
journal = {Izvestiya. Mathematics },
pages = {569--587},
publisher = {mathdoc},
volume = {75},
number = {3},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/}
}
V. A. Krasnov. Maximal intersections of three real quadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 569-587. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/