Maximal intersections of three real quadrics
Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 569-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider real algebraic varieties that are intersections of three real quadrics. For brevity they are referred to as real triquadrics. We construct triquadrics that are $M$-varieties and calculate the cohomology groups of the real parts of such triquadrics with coefficients in the field of two elements using relations between triquadrics and plane curves.
Keywords: maximal varieties, theta-characteristics, spectral curve.
Mots-clés : triquadrics
@article{IM2_2011_75_3_a4,
     author = {V. A. Krasnov},
     title = {Maximal intersections of three real quadrics},
     journal = {Izvestiya. Mathematics },
     pages = {569--587},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Maximal intersections of three real quadrics
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 569
EP  - 587
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/
LA  - en
ID  - IM2_2011_75_3_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Maximal intersections of three real quadrics
%J Izvestiya. Mathematics 
%D 2011
%P 569-587
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/
%G en
%F IM2_2011_75_3_a4
V. A. Krasnov. Maximal intersections of three real quadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 3, pp. 569-587. http://geodesic.mathdoc.fr/item/IM2_2011_75_3_a4/

[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077v2

[2] V. V. Nikulin, “On the connected components of moduli of real polarized $ \mathrm K3$-surfaces”, Izv. Math., 72:1 (2008), 91–111 | DOI | MR | Zbl

[3] I. V. Dolgachev, Topics in classical algebraic geometry. I, www.math.lsa.umich.edu/~idolga/topics.pdf

[4] A. C. Dixon, “Note on the reduction of a ternary quantic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl

[5] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[6] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[7] V. A. Krasnov, “Characteristic classes of vector bundles on a real algebraic variety”, Math. USSR-Izv., 39:1 (1992), 703–730 | DOI | MR | Zbl | Zbl

[8] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966 | MR | Zbl | Zbl

[9] V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | MR | Zbl

[10] C. H. Clemens, A scrapbook of complex curve theory, Plenum, New York–London, 1980 | MR | MR | Zbl | Zbl