Bases of exponentials, sines and cosines in weighted spaces on a~finite interval
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 413-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a result concerning the basis property in a weighted space on an interval $(-a,a)$ for a system of exponentials generated by the zeros of the Fourier transform of a function with singularities at the ends of the support interval $(-a,a)$. For an arbitrary $\Delta\in\mathbb{C}$ we find a criterion for the basis property of the system $(e^{i(n+\Delta\operatorname{sign} n)t})_{n\in\mathbb{Z}}$ in a weighted space on the interval $(-\pi,\pi)$ and the systems of sines $(\sin((n+\Delta)t))_{n\in\mathbb{N}}$ and cosines $1\cup (\cos((n+\Delta)t))_{n\in\mathbb{N}}$ in a weighted space on the interval $(0,\pi)$. The weight is everywhere a finite product of polynomial functions.
Keywords: bases of exponentials, weighted spaces.
@article{IM2_2011_75_2_a7,
     author = {S. S. Pukhov},
     title = {Bases of exponentials, sines and cosines in weighted spaces on a~finite interval},
     journal = {Izvestiya. Mathematics },
     pages = {413--443},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a7/}
}
TY  - JOUR
AU  - S. S. Pukhov
TI  - Bases of exponentials, sines and cosines in weighted spaces on a~finite interval
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 413
EP  - 443
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a7/
LA  - en
ID  - IM2_2011_75_2_a7
ER  - 
%0 Journal Article
%A S. S. Pukhov
%T Bases of exponentials, sines and cosines in weighted spaces on a~finite interval
%J Izvestiya. Mathematics 
%D 2011
%P 413-443
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a7/
%G en
%F IM2_2011_75_2_a7
S. S. Pukhov. Bases of exponentials, sines and cosines in weighted spaces on a~finite interval. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 413-443. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a7/

[1] S. M. Ponomarev, “On an eigenvalue problem”, Soviet Math. Dokl., 20:6 (1979), 1398–1400 | MR | Zbl

[2] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005

[3] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl

[4] V. I. Macaev, M. Z. Solomjak, “On existence conditions for the stieltjes integral”, Math. USSR-Sb., 17:4 (1972), 515–527 | DOI | MR | Zbl | Zbl

[5] V. I. Macaev, M. Z. Solomjak, “On the basis property of sine and cosine systems in a weighted space”, Differential Equations, 34:1 (1998), 39–43 | MR | Zbl

[6] E. I. Moiseev, “On the basis property of systems of sines and cosines”, Soviet Math. Dokl., 29:2 (1984), 296–300 | MR | Zbl

[7] G. G. Devdariani, Bazisnost nekotorykh spetsialnykh sistem sobstvennykh funktsii nesamosopryazhennykh differentsialnykh operatorov, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1986

[8] S. S. Pukhov, A. M. Sedletskii, “Bases of exponentials, sines, and cosines in weighted spaces on a finite interval”, Dokl. Math., 79:2 (2009), 236–239 | DOI | MR | Zbl

[9] St. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993 | MR | MR | Zbl | Zbl

[10] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl