Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_2_a7, author = {S. S. Pukhov}, title = {Bases of exponentials, sines and cosines in weighted spaces on a~finite interval}, journal = {Izvestiya. Mathematics }, pages = {413--443}, publisher = {mathdoc}, volume = {75}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a7/} }
S. S. Pukhov. Bases of exponentials, sines and cosines in weighted spaces on a~finite interval. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 413-443. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a7/
[1] S. M. Ponomarev, “On an eigenvalue problem”, Soviet Math. Dokl., 20:6 (1979), 1398–1400 | MR | Zbl
[2] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005
[3] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl
[4] V. I. Macaev, M. Z. Solomjak, “On existence conditions for the stieltjes integral”, Math. USSR-Sb., 17:4 (1972), 515–527 | DOI | MR | Zbl | Zbl
[5] V. I. Macaev, M. Z. Solomjak, “On the basis property of sine and cosine systems in a weighted space”, Differential Equations, 34:1 (1998), 39–43 | MR | Zbl
[6] E. I. Moiseev, “On the basis property of systems of sines and cosines”, Soviet Math. Dokl., 29:2 (1984), 296–300 | MR | Zbl
[7] G. G. Devdariani, Bazisnost nekotorykh spetsialnykh sistem sobstvennykh funktsii nesamosopryazhennykh differentsialnykh operatorov, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1986
[8] S. S. Pukhov, A. M. Sedletskii, “Bases of exponentials, sines, and cosines in weighted spaces on a finite interval”, Dokl. Math., 79:2 (2009), 236–239 | DOI | MR | Zbl
[9] St. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993 | MR | MR | Zbl | Zbl
[10] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl