@article{IM2_2011_75_2_a6,
author = {M. V. Plekhanova and V. E. Fedorov},
title = {On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative},
journal = {Izvestiya. Mathematics},
pages = {395--412},
year = {2011},
volume = {75},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a6/}
}
TY - JOUR AU - M. V. Plekhanova AU - V. E. Fedorov TI - On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative JO - Izvestiya. Mathematics PY - 2011 SP - 395 EP - 412 VL - 75 IS - 2 UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a6/ LA - en ID - IM2_2011_75_2_a6 ER -
%0 Journal Article %A M. V. Plekhanova %A V. E. Fedorov %T On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative %J Izvestiya. Mathematics %D 2011 %P 395-412 %V 75 %N 2 %U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a6/ %G en %F IM2_2011_75_2_a6
M. V. Plekhanova; V. E. Fedorov. On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative. Izvestiya. Mathematics, Tome 75 (2011) no. 2, pp. 395-412. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a6/
[1] R. E. Showalter, “Nonlinear degenerate evolution equations and partial differential equations of mixed type”, SIAM J. Math. Anal., 6:1 (1975), 25–42 | DOI | MR | Zbl
[2] G. A. Sviridyuk, V. E. Fëdorov, “On the identities of analytic semigroups of operators with kernels”, Siberian Math. J., 39:3 (1998), 522–533 | DOI | MR | Zbl
[3] V. E. Fedorov, “Degenerate strongly continuous semigroups of operators”, St. Petersburg Math. J., 12:3 (2001), 471–489 | MR | Zbl
[4] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2003 | MR | Zbl
[5] P. C. Müller, “Linear control design of linear descriptor systems”, 14th Triennial World Congress (Beijing), 1999, 31–36
[6] V. F. Chistyakov, A. A. Scheglova, Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR | Zbl
[7] G. A. Sviridyuk, A. A. Efremov, “Optimal control of Sobolev-type linear equations with relatively $p$-sectorial operators”, Differential Equations, 31:11 (1995), 1882–1890 | MR | Zbl
[8] G. A. Sviridyuk, A. A. Efremov, “Optimal control problem for a class of linear equations of Sobolev type”, Russian Math. (Iz. VUZ), 40:12 (1996), 60–71 | MR | Zbl
[9] G. A. Sviridyuk, A. A. Efremov, “Optimal control of a class of linear degenerate equations”, Dokl. Math., 59:1 (1999), 157–159 | MR | Zbl
[10] V. E. Fedorov, M. V. Plekhanova, “Optimal control of Sobolev type linear equations”, Differ. Equ., 40:11 (2004), 1627–1637 | DOI | MR | Zbl
[11] V. E. Fedorov, M. V. Plekhanova, “Issledovanie odnoi zadachi optimalnogo upravleniya”, Vestn. Chelyab. gos. ped. un-ta. Ser. 4. Estestv. nauki, 2005, no. 6, 23–31
[12] V. E. Fedorov, M. V. Plekhanova, “Slabye resheniya i problema kvadraticheskogo regulyatora dlya vyrozhdennogo differentsialnogo uravneniya v gilbertovom prostranstve”, Vychislitelnye tekhnologii, 9:2 (2004), 92–102 | Zbl
[13] M. V. Plekhanova, V. E. Fedorov, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 5, 40–44 | MR
[14] M. V. Plekhanova, V. E. Fedorov, “Zadachi startovogo upravleniya dlya lineinykh uravnenii sobolevskogo tipa”, Vestn. YuUrGU. Ser. Matem., fiz., khim., 2005, no. 6, 43–49
[15] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl | Zbl
[16] S. Mizohata, The theory of partial differential equations, Cambridge Univ. Press, London, 1973 | MR | Zbl
[17] G. A. Sviridyuk, G. A. Kuznetsov, “Relatively strongly $p$-sectorial linear operators”, Dokl. Math., 59:2 (1999), 298–300 | MR | Zbl