Real four-dimensional biquadrics
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 371-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider intersections of two real five-dimensional quadrics, which are referred to for brevity as real four-dimensional biquadrics. Their rigid isotopy classes were described long ago: there are 16 such classes. We prove that the rigid isotopy class of a non-singular real four-dimensional biquadric is uniquely determined by the topological type of its real part. To do this, we calculate the dimensions of the cohomology spaces of the real part of a four-dimensional biquadric.
Keywords: rigid isotopy classes, coarse isotopy classes, index function.
Mots-clés : biquadrics
@article{IM2_2011_75_2_a5,
     author = {V. A. Krasnov},
     title = {Real four-dimensional biquadrics},
     journal = {Izvestiya. Mathematics },
     pages = {371--394},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a5/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real four-dimensional biquadrics
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 371
EP  - 394
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a5/
LA  - en
ID  - IM2_2011_75_2_a5
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real four-dimensional biquadrics
%J Izvestiya. Mathematics 
%D 2011
%P 371-394
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a5/
%G en
%F IM2_2011_75_2_a5
V. A. Krasnov. Real four-dimensional biquadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 371-394. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a5/

[1] M. Reid, The complete intersection of two or more quadrics, Ph.D. thesis, Cambridge, 1972; ^\sim$masda/3folds/qu.pdf} http://www.warwick.ac.uk/<nobr>${

[2] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl | Zbl

[3] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl

[4] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[5] V. A. Krasnov, “On real quadric line complexes”, Izv. Math., 74:6 (2010), 1255–1276 | DOI | Zbl

[6] A. A. Agrachev, R. V. Gamkrelidze, “Quadratic maps and smooth vector-valued functions: Euler characteristics of level sets”, J. Soviet Math., 55:4 (1991), 1892–1928 | DOI | MR | Zbl | Zbl

[7] C. T. C. Wall, “Stability, pencils and polytopes”, Bull. London Math. Soc., 12:6 (1980), 401–421 ; “Сравнения по модулю 16 в шестнадцатой проблеме Гильберта. II”, 7:2 (1973), 91–92 | DOI | MR | Zbl | MR | Zbl

[8] V. A. Rokhlin, “Congruences modulo 16 in Hilbert's sixtieth problem”, Funct. Anal. Appl., 6:4 (1972), 301–306 ; “Congruences modulo 16 in Hilbert's sixtieth problem. II”, 7:2 (1973), 163–164 | DOI | DOI | MR | MR | Zbl | Zbl

[9] V. M. Kharlamov, “New relations for the Euler characteristic of real algebraic manifolds”, Funct. Anal. Appl., 7:2 (1973), 147–150 | DOI | MR | Zbl

[10] D. A. Gudkov, A. D. Krakhnov, “Periodicity of Euler characteristic of real algebraic $(M-1)$-manifolds”, Funct. Anal. Appl., 7:2 (1973), 98–102 | DOI | MR | Zbl

[11] A. A. Agrachev, “Topology of quadratic maps and Hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[12] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[13] S. López de Medrano, “Topology of the intersection of quadrics in $\mathbb{R}^n$”, Algebraic topology (Arcata, CA, 1986), Lecture Notes in Math., 1370, Springer-Verlag, Berlin, 1989, 280–292 | DOI | MR | Zbl

[14] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland, Amsterdam–London; Elsevier, New York, 1974 | MR | MR | Zbl | Zbl

[15] A. B. Altman, S. I. Kleiman, “Foundations of the theory of Fano schemes”, Compositio Math., 34 (1977), 3–47 | MR | Zbl

[16] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl

[17] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966 | MR | Zbl | Zbl

[18] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York–London, 1972 | MR | MR | Zbl | Zbl