Real four-dimensional biquadrics
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 371-394
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider intersections of two real five-dimensional quadrics,
which are referred to for brevity as real four-dimensional biquadrics.
Their rigid isotopy classes were described long ago: there are 16 such classes.
We prove that the rigid isotopy class of a non-singular real four-dimensional
biquadric is uniquely determined by the topological type of its real part.
To do this, we calculate the dimensions of the cohomology spaces of the real
part of a four-dimensional biquadric.
Keywords:
rigid isotopy classes, coarse isotopy classes, index function.
Mots-clés : biquadrics
Mots-clés : biquadrics
@article{IM2_2011_75_2_a5,
author = {V. A. Krasnov},
title = {Real four-dimensional biquadrics},
journal = {Izvestiya. Mathematics },
pages = {371--394},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a5/}
}
V. A. Krasnov. Real four-dimensional biquadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 371-394. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a5/