Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_2_a5, author = {V. A. Krasnov}, title = {Real four-dimensional biquadrics}, journal = {Izvestiya. Mathematics }, pages = {371--394}, publisher = {mathdoc}, volume = {75}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a5/} }
V. A. Krasnov. Real four-dimensional biquadrics. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 371-394. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a5/
[1] M. Reid, The complete intersection of two or more quadrics, Ph.D. thesis, Cambridge, 1972; ^\sim$masda/3folds/qu.pdf} http://www.warwick.ac.uk/<nobr>${
[2] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl | Zbl
[3] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl
[4] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[5] V. A. Krasnov, “On real quadric line complexes”, Izv. Math., 74:6 (2010), 1255–1276 | DOI | Zbl
[6] A. A. Agrachev, R. V. Gamkrelidze, “Quadratic maps and smooth vector-valued functions: Euler characteristics of level sets”, J. Soviet Math., 55:4 (1991), 1892–1928 | DOI | MR | Zbl | Zbl
[7] C. T. C. Wall, “Stability, pencils and polytopes”, Bull. London Math. Soc., 12:6 (1980), 401–421 ; “Сравнения по модулю 16 в шестнадцатой проблеме Гильберта. II”, 7:2 (1973), 91–92 | DOI | MR | Zbl | MR | Zbl
[8] V. A. Rokhlin, “Congruences modulo 16 in Hilbert's sixtieth problem”, Funct. Anal. Appl., 6:4 (1972), 301–306 ; “Congruences modulo 16 in Hilbert's sixtieth problem. II”, 7:2 (1973), 163–164 | DOI | DOI | MR | MR | Zbl | Zbl
[9] V. M. Kharlamov, “New relations for the Euler characteristic of real algebraic manifolds”, Funct. Anal. Appl., 7:2 (1973), 147–150 | DOI | MR | Zbl
[10] D. A. Gudkov, A. D. Krakhnov, “Periodicity of Euler characteristic of real algebraic $(M-1)$-manifolds”, Funct. Anal. Appl., 7:2 (1973), 98–102 | DOI | MR | Zbl
[11] A. A. Agrachev, “Topology of quadratic maps and Hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl
[12] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl
[13] S. López de Medrano, “Topology of the intersection of quadrics in $\mathbb{R}^n$”, Algebraic topology (Arcata, CA, 1986), Lecture Notes in Math., 1370, Springer-Verlag, Berlin, 1989, 280–292 | DOI | MR | Zbl
[14] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland, Amsterdam–London; Elsevier, New York, 1974 | MR | MR | Zbl | Zbl
[15] A. B. Altman, S. I. Kleiman, “Foundations of the theory of Fano schemes”, Compositio Math., 34 (1977), 3–47 | MR | Zbl
[16] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl
[17] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966 | MR | Zbl | Zbl
[18] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York–London, 1972 | MR | MR | Zbl | Zbl