Normal automorphisms of free Burnside groups
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 223-237

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for an arbitrary odd $n\geqslant1003$ and $m>1$ every automorphism of the free Burnside group $B(m,n)$ that stabilizes every maximal normal subgroup $N\trianglelefteq B(m,n)$ of infinite index is an inner automorphism. For the same values of $m$ and $n$, we establish that the subgroup of inner automorphisms of $\operatorname{Aut}(B(m,n))$ is maximal among the subgroups in which the orders of the elements are bounded by $n$.
Keywords: free Burnside group, normal automorphism, inner automorphism, maximal subgroup
Mots-clés : non-Abelian simple group.
@article{IM2_2011_75_2_a0,
     author = {V. S. Atabekyan},
     title = {Normal automorphisms of free {Burnside} groups},
     journal = {Izvestiya. Mathematics },
     pages = {223--237},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Normal automorphisms of free Burnside groups
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 223
EP  - 237
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/
LA  - en
ID  - IM2_2011_75_2_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Normal automorphisms of free Burnside groups
%J Izvestiya. Mathematics 
%D 2011
%P 223-237
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/
%G en
%F IM2_2011_75_2_a0
V. S. Atabekyan. Normal automorphisms of free Burnside groups. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 223-237. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/