Normal automorphisms of free Burnside groups
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 223-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for an arbitrary odd $n\geqslant1003$ and $m>1$ every automorphism of the free Burnside group $B(m,n)$ that stabilizes every maximal normal subgroup $N\trianglelefteq B(m,n)$ of infinite index is an inner automorphism. For the same values of $m$ and $n$, we establish that the subgroup of inner automorphisms of $\operatorname{Aut}(B(m,n))$ is maximal among the subgroups in which the orders of the elements are bounded by $n$.
Keywords: free Burnside group, normal automorphism, inner automorphism, maximal subgroup
Mots-clés : non-Abelian simple group.
@article{IM2_2011_75_2_a0,
     author = {V. S. Atabekyan},
     title = {Normal automorphisms of free {Burnside} groups},
     journal = {Izvestiya. Mathematics },
     pages = {223--237},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Normal automorphisms of free Burnside groups
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 223
EP  - 237
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/
LA  - en
ID  - IM2_2011_75_2_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Normal automorphisms of free Burnside groups
%J Izvestiya. Mathematics 
%D 2011
%P 223-237
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/
%G en
%F IM2_2011_75_2_a0
V. S. Atabekyan. Normal automorphisms of free Burnside groups. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 223-237. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/

[1] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979 | MR | MR | Zbl | Zbl

[2] P. S. Novikov, S. I. Adjan, “Infinite periodic groups. I”, Math. USSR-Izv., 2:1 (1968), 209–236 | DOI | DOI | DOI | MR | MR | MR | Zbl

[3] P. S. Novikov, S. I. Adjan, “On Abelian subgroups and the conjugacy problem in free periodic groups of odd order”, Math. USSR-Izv., 2:5 (1968), 1131–1144 | DOI | MR | Zbl

[4] S. I. Adjan, “The subgroups of free periodic groups of odd exponent”, Proc. Steklov Inst. Math., 112 (1971), 61–69 | MR | Zbl

[5] S. I. Adjan, “An axiomatic method of constructing groups with given properties”, Russian Math. Surveys, 32:1 (1977), 1–14 | DOI | MR | Zbl | Zbl

[6] S. I. Adyan, “Investigations on the Burnside problem and questions connected with it”, Proc. Steklov Inst. Math., 168 (1986), 179–205 | MR | Zbl | Zbl

[7] S. I. Adyan, “Problema Bernsaida o periodicheskikh gruppakh i smezhnye voprosy”, Sovr. probl. matem., 1, MIAN, M., 2003, 5–28 | DOI | MR

[8] A. Lubotzky, “Normal automorphisms of free groups”, J. Algebra, 63:2 (1980), 494–498 | DOI | MR | Zbl

[9] A. S.-T. Lue, “Normal automorphisms of free groups”, J. Algebra, 64:1 (1980), 52–53 | DOI | MR | Zbl

[10] M. Jarden, “Normal automorphisms of free profinite groups”, J. Algebra, 62:1 (1980), 118–123 | DOI | MR | Zbl

[11] M. Jarden, J. Ritter, “Normal automorphisms of absolute Galois groups of $\mathfrak{p}$-adic fields”, Duke Math. J., 47:1 (1980), 47–56 | DOI | MR | Zbl

[12] V. A. Roman'kov, “Normal automorphisms of discrete groups”, Siberian Math. J., 24:4 (1983), 604–614 | DOI | MR | Zbl | Zbl

[13] Ch. Gupta, N. S. Romanovskii, “Normal automorphisms of a free pro-$p$-group in the variety $\mathcal{N}_2 \mathcal{A}$”, Algebra and Logic, 35:3 (1996), 139–148 | MR | Zbl

[14] N. S. Romanovskii, “Normal automorphisms of free solvable pro-$p$-groups”, Algebra and Logic, 36:4 (1997), 257–263 | DOI | MR | Zbl

[15] G. Endimioni, “Pointwise inner automorphisms in a free nilpotent group”, Q. J. Math., 53:4 (2002), 397–402 | DOI | MR | Zbl

[16] O. Bogopolski, E. Kudryavtseva, H. Zieschang, “Simple curves on surfaces and an analog of a theorem of Magnus for surface groups”, Math. Z., 247:3 (2004), 595–609 | DOI | MR | Zbl

[17] M. V. Neshchadim, “Free products of groups have no outer normal automorphisms”, Algebra and Logic, 35:5 (1996), 316–318 | MR | Zbl

[18] A. Minasyan, D. Osin, “Normal automorphisms of relatively hyperbolic groups”, Trans. Amer. Math. Soc., 362:11 (2010), 6079–6103 | DOI | MR | Zbl

[19] S. I. Adyan, “Periodic products of groups”, Proc. Steklov Inst. Math., 142 (1979), 1–19 | MR | Zbl

[20] S. I. Adyan, “On the simplicity of periodic products of groups”, Soviet Math. Dokl., 19:4 (1978), 910–913 | MR | Zbl

[21] E. A. Cherepanov, “Normal automorphisms of free Burnside groups of large odd exponents”, Internat. J. Algebra Comput, 16:5 (2006), 839–847 | DOI | MR | Zbl

[22] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 8, eds. V. D. Mazurov, Yu. I. Merzlyakov, V. A. Chirkin, Izd-vo In-ta matem. SO AN SSSR, Novosibirsk, 1982 | MR | Zbl

[23] S. I. Adyan, “Normal subgroups of free periodic groups”, Math. USSR-Izv., 19:2 (1982), 215–229 | DOI | MR | Zbl

[24] V. S. Atabekyan, “On periodic groups of odd period $n\ge 1003$”, Math. Notes, 82:4 (2007), 443–447 | DOI | MR | Zbl

[25] V. S. Atabekyan, “The normalizers of free subgroups in free burnside groups of odd period $n \ge 1003$”, J. Math. Sci., 166:6 (2010), 691–703 | DOI

[26] A. Yu. Ol'shanskii, “Self-normalization of free subgroups in the free Burnside groups”, Groups, rings, Lie and Hopf algebras (St. John's, NF, 2001), Math. Appl., 555, Kluwer Acad. Publ., Dordrecht, 2003, 179–187 | MR | Zbl

[27] S. I. Adyan, I. G. Lysënok, “On groups all of whose proper subgroups are finite cyclic”, Math. USSR-Izv., 39:2 (1992), 905–957 | DOI | MR | Zbl

[28] V. S. Atabekyan, “Adian–Lisenok groups and (U) condition”, J. Contemp. Math. Anal., 43:5 (2008), 265–273 | DOI | MR

[29] V. S. Atabekyan, “Non-$\phi$-admissible normal subgroups of free Burnside groups”, J. Contemp. Math. Anal., 45:2 (2010), 112–122 | DOI | MR