Normal automorphisms of free Burnside groups
Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 223-237
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for an arbitrary odd $n\geqslant1003$ and $m>1$ every automorphism of the free Burnside group $B(m,n)$ that stabilizes every maximal normal subgroup $N\trianglelefteq B(m,n)$ of infinite index is an inner automorphism. For the same values of $m$ and $n$, we establish that the subgroup of inner automorphisms of $\operatorname{Aut}(B(m,n))$ is maximal among the subgroups in which the orders of the elements are bounded by $n$.
Keywords:
free Burnside group, normal automorphism,
inner automorphism, maximal subgroup
Mots-clés : non-Abelian simple group.
Mots-clés : non-Abelian simple group.
@article{IM2_2011_75_2_a0,
author = {V. S. Atabekyan},
title = {Normal automorphisms of free {Burnside} groups},
journal = {Izvestiya. Mathematics },
pages = {223--237},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/}
}
V. S. Atabekyan. Normal automorphisms of free Burnside groups. Izvestiya. Mathematics , Tome 75 (2011) no. 2, pp. 223-237. http://geodesic.mathdoc.fr/item/IM2_2011_75_2_a0/