On linear independence of values of certain $q$-series
Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 177-221
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain qualitative and quantitative results on the linear
independence of the values of functions in a fairly wide class
generalizing $q$-hypergeometric series and of their derivatives
at algebraic points. The results are proved in both
the Archimedean and $p$-adic cases.
Keywords:
algebraic number field, absolute height of an algebraic number,
$q$-series, $q$-exponential function, linear independence,
linear independence measure, Hankel determinant
Mots-clés : $q$-logarithm, cyclotomic polynomial.
Mots-clés : $q$-logarithm, cyclotomic polynomial.
@article{IM2_2011_75_1_a6,
author = {I. P. Rochev},
title = {On linear independence of values of certain $q$-series},
journal = {Izvestiya. Mathematics },
pages = {177--221},
publisher = {mathdoc},
volume = {75},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a6/}
}
I. P. Rochev. On linear independence of values of certain $q$-series. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 177-221. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a6/