On linear independence of values of certain $q$-series
Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 177-221

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain qualitative and quantitative results on the linear independence of the values of functions in a fairly wide class generalizing $q$-hypergeometric series and of their derivatives at algebraic points. The results are proved in both the Archimedean and $p$-adic cases.
Keywords: algebraic number field, absolute height of an algebraic number, $q$-series, $q$-exponential function, linear independence, linear independence measure, Hankel determinant
Mots-clés : $q$-logarithm, cyclotomic polynomial.
@article{IM2_2011_75_1_a6,
     author = {I. P. Rochev},
     title = {On linear independence of values of certain $q$-series},
     journal = {Izvestiya. Mathematics },
     pages = {177--221},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a6/}
}
TY  - JOUR
AU  - I. P. Rochev
TI  - On linear independence of values of certain $q$-series
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 177
EP  - 221
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a6/
LA  - en
ID  - IM2_2011_75_1_a6
ER  - 
%0 Journal Article
%A I. P. Rochev
%T On linear independence of values of certain $q$-series
%J Izvestiya. Mathematics 
%D 2011
%P 177-221
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a6/
%G en
%F IM2_2011_75_1_a6
I. P. Rochev. On linear independence of values of certain $q$-series. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 177-221. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a6/