Modified Hardy and Hardy--Littlewood operators and their behaviour in various spaces
Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 29-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behaviour of modified Hardy and Hardy–Littlewood operators in $\mathbf P$-adic Herz and Hölder–Besov spaces and in spaces close to $\mathbf P$-adic Hardy spaces and $\mathrm{BMO}$. We also establish a Titchmarsh-type equation for distributions and obtain an estimate for the multiplicative Fourier transform in $\mathbf P$-adic Hardy spaces.
Keywords: modified Hardy–Littlewood operator, modified Hardy operator, $\mathbf P$-adic Hölder–Besov spaces, $\mathbf P$-adic Hardy spaces
Mots-clés : $\mathbf P$-adic $\mathrm{BMO}$-space.
@article{IM2_2011_75_1_a1,
     author = {S. S. Volosivets},
     title = {Modified {Hardy} and {Hardy--Littlewood} operators and their behaviour in various spaces},
     journal = {Izvestiya. Mathematics },
     pages = {29--51},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Modified Hardy and Hardy--Littlewood operators and their behaviour in various spaces
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 29
EP  - 51
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a1/
LA  - en
ID  - IM2_2011_75_1_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Modified Hardy and Hardy--Littlewood operators and their behaviour in various spaces
%J Izvestiya. Mathematics 
%D 2011
%P 29-51
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a1/
%G en
%F IM2_2011_75_1_a1
S. S. Volosivets. Modified Hardy and Hardy--Littlewood operators and their behaviour in various spaces. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 29-51. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a1/

[1] B. I. Golubov, “On the binary analogs of the Hardy and Hardy–Littlewood operators”, Siberian Math. J., 40:6 (1999), 1051–1058 | DOI | MR | Zbl

[2] B. I. Golubov, “Ob ogranichennosti dvoichnykh operatorov Khardi i Khardi–Littlvuda v dvoichnykh prostranstvakh $H$ i $\mathrm{BMO}$”, Anal. Math., 26:4 (2000), 287–298 | DOI | MR | Zbl

[3] S. S. Volosivets, “On $\mathbf P$-adic analogs of Hardy and Hardy–Littlewood operators”, East J. Approx., 11:1 (2005), 57–72 | MR | Zbl

[4] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl

[5] D. V. Giang, F. Móricz, “The Cesàro operator is bounded on the Hardy space $H^1$”, Acta Sci. Math. (Szeged), 61:1–4 (1995), 535–544 | MR | Zbl

[6] B. I. Golubov, “Boundedness of the Hardy and the Hardy–Littlewood operators in the spaces $\operatorname {Re}H^1$ and $\mathrm{BMO}$”, Sb. Math., 188:7 (1997), 1041–1054 | DOI | MR | Zbl

[7] F. Móricz, “The harmonic Cesàro and Copson operators on the spaces $L^p$, $1\le p\le\infty$, $H^1$ and $\operatorname{BMO}$”, Acta Sci. Math. (Szeged), 65:1–2 (1999), 293–310 | MR | Zbl

[8] B. I. Golubov, “On an analogue of Hardy's inequality for the Walsh–Fourier transform”, Izv. Math., 65:3 (2001), 425–435 | DOI | MR | Zbl

[9] S. S. Volosivets, “A modified $P$-adic integral and a modified $P$-adic derivative for functions defined on a half-axis”, Russian Math. (Iz. VUZ), 49:6 (2005), 25–36 | MR | Zbl

[10] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[11] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, NJ, 1975 | MR | Zbl

[12] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Scientific, River Edge, NJ, 1994 | MR | MR | Zbl | Zbl

[13] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 35:3 (1961), 415–426 | DOI | MR | Zbl

[14] D. Sarason, “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207 (1975), 391–405 | DOI | MR | Zbl

[15] D. Goldberg, “A local version of real Hardy spaces”, Duke Math. J., 46:1 (1979), 27–42 | DOI | MR | Zbl

[16] C. S. Herz, “Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms”, J. Math. Mech., 18:4 (1968), 283–323 | MR | Zbl

[17] C. W. Onneweer, “Generalized Lipschitz spaces and Herz spaces on certain totally disconnected groups”, Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981), Lecture Notes in Math., 939, Springer-Verlag, Berlin, 1982, 106–121 | DOI | MR | Zbl

[18] C. W. Onneweer, W. Su, “Homogeneous Besov spaces on locally compact Vilenkin groups”, Studia Math., 93:1 (1989), 17–39 | MR | Zbl

[19] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[20] T. Kitada, “Weighted $H^p$ multipliers on locally compact Vilenkin groups”, Monatsh. Math., 110:3–4 (1990), 283–295 | DOI | MR | Zbl

[21] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[22] B. Kuttner, “Some theorems on fractional derivatives”, Proc. London Math. Soc. (3), 3 (1953), 480–497 | DOI | MR | Zbl

[23] A. A. Konyushkov, “O klassakh Lipshitsa”, Izv. AN SSSR. Ser. matem., 21:3 (1957), 423–448 | MR | Zbl

[24] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, North-Holland, Amsterdam–New York–Oxford, 1985 | MR | Zbl