On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros
Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 1-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the greatest lower bound for the type of an entire function of order $\rho\in(0,1)$ whose sequence of zeros lies on one ray and has prescribed lower and upper $\rho$-densities. We make a thorough study of the dependence of this extremal quantity on $\rho$ and on properties of the distribution of zeros. The results are applied to an extremal problem on the radii of completeness of systems of exponentials.
Keywords: extremal problems, type of entire function, upper and lower densities of zeros, completeness of systems of exponentials.
@article{IM2_2011_75_1_a0,
     author = {G. G. Braichev and V. B. Sherstyukov},
     title = {On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros},
     journal = {Izvestiya. Mathematics },
     pages = {1--27},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a0/}
}
TY  - JOUR
AU  - G. G. Braichev
AU  - V. B. Sherstyukov
TI  - On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 1
EP  - 27
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a0/
LA  - en
ID  - IM2_2011_75_1_a0
ER  - 
%0 Journal Article
%A G. G. Braichev
%A V. B. Sherstyukov
%T On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros
%J Izvestiya. Mathematics 
%D 2011
%P 1-27
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a0/
%G en
%F IM2_2011_75_1_a0
G. G. Braichev; V. B. Sherstyukov. On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros. Izvestiya. Mathematics , Tome 75 (2011) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/IM2_2011_75_1_a0/