On real quadric line complexes
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1255-1276
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the topological types of the real parts of the Kummer
surfaces associated with real three-dimensional quadric line complexes.
The topological type of the real part of such a surface is shown
to depend on the number of real singular points: it is determined
by the number of such points if any exist, and otherwise the real part
of the Kummer surface is either empty or consists of one or two tori.
Keywords:
pencil of quadrics, Kummer surface, index function.
Mots-clés : quadric complex, biquadric
Mots-clés : quadric complex, biquadric
@article{IM2_2010_74_6_a5,
author = {V. A. Krasnov},
title = {On real quadric line complexes},
journal = {Izvestiya. Mathematics },
pages = {1255--1276},
publisher = {mathdoc},
volume = {74},
number = {6},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a5/}
}
V. A. Krasnov. On real quadric line complexes. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1255-1276. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a5/