On real quadric line complexes
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1255-1276.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the topological types of the real parts of the Kummer surfaces associated with real three-dimensional quadric line complexes. The topological type of the real part of such a surface is shown to depend on the number of real singular points: it is determined by the number of such points if any exist, and otherwise the real part of the Kummer surface is either empty or consists of one or two tori.
Keywords: pencil of quadrics, Kummer surface, index function.
Mots-clés : quadric complex, biquadric
@article{IM2_2010_74_6_a5,
     author = {V. A. Krasnov},
     title = {On real quadric line complexes},
     journal = {Izvestiya. Mathematics },
     pages = {1255--1276},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a5/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On real quadric line complexes
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1255
EP  - 1276
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a5/
LA  - en
ID  - IM2_2010_74_6_a5
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On real quadric line complexes
%J Izvestiya. Mathematics 
%D 2010
%P 1255-1276
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a5/
%G en
%F IM2_2010_74_6_a5
V. A. Krasnov. On real quadric line complexes. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1255-1276. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a5/

[1] M. Reid, The complete intersection of two or more quadrics, Ph. D. thesis, Cambridge, 1972

[2] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl | Zbl

[3] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl

[4] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[5] V. A. Krasnov, “Real three-dimensional biquadrics”, Izv. Math., 74:4 (2010), 781–804 | DOI

[6] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl

[7] I. V. Dologachev, Topics in classical algebraic geometry. I, www.math.lsa.umich.edu/~topics.pdf

[8] A. Comessatti, “Sulle varietà abeliane reali”, Ann. Mat. Pura Appl., 2:1 (1925), 67–106 | DOI | MR | Zbl

[9] V. A. Krasnov, “Albanese mapping for real algebraic varieites”, Math. Notes, 32:3 (1982), 661–666 | DOI | MR | Zbl

[10] I. O. Kalinin, “Cohomology of real algebraic varieties”, J. Math. Sci. (N. Y.), 131:1 (2005), 5323–5344 | DOI | MR | Zbl

[11] A. A. Agrachev, “Homology of the intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl