The spectral function of a~singular differential operator of order~$2m$
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1205-1224
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the spectral function of a self-adjoint semibounded below differential operator on a Hilbert space $L_2[0,\infty)$ and obtain the formulae for the spectral function of the operator $(-1)^{m}y^{(2m)}(x)$ with general boundary conditions at the zero. In particular, for the boundary conditions $y(0)=y'(0)=\dots=y^{(m-1)}(0)=0$ we find the explicit form of the spectral function $\Theta_{mB'}(x,x,\lambda)$ on the diagonal $x=y$ for $\lambda \geqslant 0$.
Keywords:
spectral function, eigenvalues, self-adjoint differential operator, regularized traces, singular differential operators, Green's function.
@article{IM2_2010_74_6_a3,
author = {A. I. Kozko and A. S. Pechentsov},
title = {The spectral function of a~singular differential operator of order~$2m$},
journal = {Izvestiya. Mathematics },
pages = {1205--1224},
publisher = {mathdoc},
volume = {74},
number = {6},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/}
}
TY - JOUR AU - A. I. Kozko AU - A. S. Pechentsov TI - The spectral function of a~singular differential operator of order~$2m$ JO - Izvestiya. Mathematics PY - 2010 SP - 1205 EP - 1224 VL - 74 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/ LA - en ID - IM2_2010_74_6_a3 ER -
A. I. Kozko; A. S. Pechentsov. The spectral function of a~singular differential operator of order~$2m$. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1205-1224. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/