The spectral function of a~singular differential operator of order~$2m$
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1205-1224

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectral function of a self-adjoint semibounded below differential operator on a Hilbert space $L_2[0,\infty)$ and obtain the formulae for the spectral function of the operator $(-1)^{m}y^{(2m)}(x)$ with general boundary conditions at the zero. In particular, for the boundary conditions $y(0)=y'(0)=\dots=y^{(m-1)}(0)=0$ we find the explicit form of the spectral function $\Theta_{mB'}(x,x,\lambda)$ on the diagonal $x=y$ for $\lambda \geqslant 0$.
Keywords: spectral function, eigenvalues, self-adjoint differential operator, regularized traces, singular differential operators, Green's function.
@article{IM2_2010_74_6_a3,
     author = {A. I. Kozko and A. S. Pechentsov},
     title = {The spectral function of a~singular differential operator of order~$2m$},
     journal = {Izvestiya. Mathematics },
     pages = {1205--1224},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - A. S. Pechentsov
TI  - The spectral function of a~singular differential operator of order~$2m$
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1205
EP  - 1224
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/
LA  - en
ID  - IM2_2010_74_6_a3
ER  - 
%0 Journal Article
%A A. I. Kozko
%A A. S. Pechentsov
%T The spectral function of a~singular differential operator of order~$2m$
%J Izvestiya. Mathematics 
%D 2010
%P 1205-1224
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/
%G en
%F IM2_2010_74_6_a3
A. I. Kozko; A. S. Pechentsov. The spectral function of a~singular differential operator of order~$2m$. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1205-1224. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/