The spectral function of a~singular differential operator of order~$2m$
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1205-1224.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectral function of a self-adjoint semibounded below differential operator on a Hilbert space $L_2[0,\infty)$ and obtain the formulae for the spectral function of the operator $(-1)^{m}y^{(2m)}(x)$ with general boundary conditions at the zero. In particular, for the boundary conditions $y(0)=y'(0)=\dots=y^{(m-1)}(0)=0$ we find the explicit form of the spectral function $\Theta_{mB'}(x,x,\lambda)$ on the diagonal $x=y$ for $\lambda \geqslant 0$.
Keywords: spectral function, eigenvalues, self-adjoint differential operator, regularized traces, singular differential operators, Green's function.
@article{IM2_2010_74_6_a3,
     author = {A. I. Kozko and A. S. Pechentsov},
     title = {The spectral function of a~singular differential operator of order~$2m$},
     journal = {Izvestiya. Mathematics },
     pages = {1205--1224},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - A. S. Pechentsov
TI  - The spectral function of a~singular differential operator of order~$2m$
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1205
EP  - 1224
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/
LA  - en
ID  - IM2_2010_74_6_a3
ER  - 
%0 Journal Article
%A A. I. Kozko
%A A. S. Pechentsov
%T The spectral function of a~singular differential operator of order~$2m$
%J Izvestiya. Mathematics 
%D 2010
%P 1205-1224
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/
%G en
%F IM2_2010_74_6_a3
A. I. Kozko; A. S. Pechentsov. The spectral function of a~singular differential operator of order~$2m$. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1205-1224. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a3/

[1] L. Gȧrding, “Eigenfunction expansions connected with elliptic differential operators”, 12 Congress Math. Scandinaves, Lund, Lunds Univ. Matematiska Institution, Lund, 1954, 44–55 | MR | Zbl

[2] B. M. Levitan, “Ob asimptoticheskom povedenii spektralnoi funktsii i o razlozhenii po sobstvennym funktsiyam samosopryazhennogo differentsialnogo uravneniya vtorogo poryadka. I”, Izv. AN SSSR. Ser. matem., 17:4 (1953), 331–364 ; “II”, Изв. АН СССР. Сер. матем., 19:1 (1955), 33–58 | MR | Zbl | MR | Zbl

[3] V. A. Marchenko, “Teoremy tauberova tipa v spektralnom analize differentsialnykh operatorov”, Izv. AN SSSR. Ser. matem., 19:6 (1955), 381–422 | MR | Zbl

[4] V. A. Il'in, “Uniform equiconvergence on the entire axis $\mathbb R$ to a Fourier integral of the spectral expansion corresponding to a self-adjoint extension of the Schrödinger operator with uniformly locally integrable potential”, Differential Equations, 31:12 (1995), 1927–1937 | MR | Zbl

[5] A. G. Kostyuchenko, “Asymptotic behavior of the spectral function of a singular differential operator of order $2m$”, Soviet Math. Dokl., 1966, no. 7, 632–635 | MR | Zbl

[6] L. Hörmander, “The spectral function of an elliptic operator”, Acta Math., 121:1 (1968), 193–218 | DOI | MR | Zbl

[7] B. M. Levitan, “Asymptotic behaviour of the spectral function of an elliptic equation”, Russian Math. Surveys, 26:6 (1971), 165–232 | DOI | MR | Zbl

[8] V. S. Buslaev, “On the asymptotic behavior of the spectral characteristics of exterior problems for the Schrödinger operator”, Math. USSR-Izv., 9:1 (1975), 139–223 | DOI | MR | Zbl | Zbl

[9] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl

[10] V. M. Babich, “Hadamard's method and the asymptotics of the spectral function of a second-order differential operator”, Math. Notes, 28:5 (1980), 800–803 | DOI | MR | Zbl

[11] V. Ya. Ivrii, “Accurate spectral asymptotics for elliptic operators that act in vector bundles”, Funct. Anal. Appl., 16:2 (1982), 101–108 | DOI | MR | Zbl | Zbl

[12] B. R. Vaǐnberg, “Parametrix and asymptotics of the spectral function of differential operators in $\mathbb R^n$”, Math. USSR-Sb., 58:1 (1982), 245–265 | DOI | MR | Zbl | Zbl

[13] Yu. G. Safarov, “Asymptotic of the spectral function of a positive elliptic operator without the nontrap condition”, Funct. Anal. Appl., 22:3 (1988), 213–223 | DOI | MR | Zbl

[14] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Translations of Mathematical Monographs, 39, Amer. Math. Soc., Providence, RI, 1975 | MR | MR | Zbl | Zbl

[15] A. G. Kostyuchenko, O nekotorykh spektralnykh svoisvakh differentsialnykh operatorov, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 1966

[16] A. I. Kozko, A. S. Pechentsov, “Regularized traces of higher-order singular differential operators”, Math. Notes, 83:1–2 (2008), 37–47 | DOI | MR | Zbl