Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2010_74_6_a1, author = {M. M. Borovikova and V. G. Zadorozhniy}, title = {Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients}, journal = {Izvestiya. Mathematics }, pages = {1127--1154}, publisher = {mathdoc}, volume = {74}, number = {6}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a1/} }
TY - JOUR AU - M. M. Borovikova AU - V. G. Zadorozhniy TI - Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients JO - Izvestiya. Mathematics PY - 2010 SP - 1127 EP - 1154 VL - 74 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a1/ LA - en ID - IM2_2010_74_6_a1 ER -
%0 Journal Article %A M. M. Borovikova %A V. G. Zadorozhniy %T Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients %J Izvestiya. Mathematics %D 2010 %P 1127-1154 %V 74 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a1/ %G en %F IM2_2010_74_6_a1
M. M. Borovikova; V. G. Zadorozhniy. Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1127-1154. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a1/
[1] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979 | MR | MR | Zbl | Zbl
[2] A. V. Fursikov, “The problem of closure of chains of moment equations corresponding to the three-dimensional Navier–Stokes system in the case of large Reynolds numbers”, Soviet Math. Dokl., 44:1 (1992), 80–85 | MR | Zbl
[3] A. V. Fursikov, “Moment theory for the Navier–Stokes equations with a random right side”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 515–555 | DOI | MR | Zbl
[4] V. E. Shapiro, V. M. Loginov, Dinamicheskie sistemy pri sluchainykh vozdeistviyakh, Nauka, Novosibirsk, 1983 | Zbl
[5] V. I. Tikhonov, “Vozdeistvie fluktuatsii na prosteishie parametricheskie sistemy”, Avtomatika i telemekhanika, 19:8 (1958), 717–724 | MR
[6] V. I. Klyatskin, Stokhasticheskie uravneniya i volny v sluchaino-neodnorodnykh sredakh, Nauka, M., 1980 | MR | Zbl
[7] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren Math. Wiss., 260, Springer-Verlag, New York–Berlin, 1984 | MR | MR | Zbl | Zbl
[8] G. Adomian, Stochastic systems, Math. Sci. Engrg., 169, Academic Press, New York–London, 1983 | MR | MR | Zbl
[9] G. Adomian, Statistical fluid mechanics: mechanics of turbulence, v. 2, Dover, Mineola, NY, 2007 | MR | Zbl | Zbl
[10] V. G. Zadorozhnii, L. N. Stroeva, “Moment functions of the solution of the Cauchy problem for a first-order linear differential equation with random coefficients”, Differ. Equ., 36:3 (2000), 423–432 | DOI | MR | Zbl
[11] V. G. Zadorozhnii, “Moment functions of the solution of the Cauchy problem for the stochastic heat equation”, Dokl. Math., 59:1 (1999), 107–109 | MR | Zbl
[12] V. G. Zadorozhnii, “On finding moment functions for the solution of the Cauchy problem for the diffusion equation with random coefficients”, Izv. Math., 66:4 (2002), 771–788 | DOI | MR | Zbl
[13] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl
[14] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl
[15] V. G. Zadorozhnii, “A differential equation in a Banach space, containing a variational derivative”, Siberian Math. J., 33:2 (1992), 247–258 | DOI | MR | Zbl
[16] V. G. Zadorozhnii, Metody variatsionnogo analiza, RKhD, In-t kompyuternykh issledovanii, 2006
[17] G. E. Shilov, Generalized functions and partial differential equations, Authorized English edition revised by the author, Gordon and Breach, New York–London–Paris, 1968 | MR | MR | Zbl | Zbl