Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients
Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1127-1154.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding the moment functions of a solution of an initial-value problem with random coefficients for the two-dimensional diffusion equation reduces to a deterministic initial-value problem involving ordinary and variational derivatives. Formulae for the moment functions of a solution are obtained for uniformly distributed and for Gaussian random coefficients.
Keywords: moment functions, variational derivative, equations with random coefficients.
Mots-clés : diffusion equation
@article{IM2_2010_74_6_a1,
     author = {M. M. Borovikova and V. G. Zadorozhniy},
     title = {Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {1127--1154},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a1/}
}
TY  - JOUR
AU  - M. M. Borovikova
AU  - V. G. Zadorozhniy
TI  - Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1127
EP  - 1154
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a1/
LA  - en
ID  - IM2_2010_74_6_a1
ER  - 
%0 Journal Article
%A M. M. Borovikova
%A V. G. Zadorozhniy
%T Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients
%J Izvestiya. Mathematics 
%D 2010
%P 1127-1154
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a1/
%G en
%F IM2_2010_74_6_a1
M. M. Borovikova; V. G. Zadorozhniy. Finding the moment functions of a~solution of the two-dimensional diffusion equation with random coefficients. Izvestiya. Mathematics , Tome 74 (2010) no. 6, pp. 1127-1154. http://geodesic.mathdoc.fr/item/IM2_2010_74_6_a1/

[1] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979 | MR | MR | Zbl | Zbl

[2] A. V. Fursikov, “The problem of closure of chains of moment equations corresponding to the three-dimensional Navier–Stokes system in the case of large Reynolds numbers”, Soviet Math. Dokl., 44:1 (1992), 80–85 | MR | Zbl

[3] A. V. Fursikov, “Moment theory for the Navier–Stokes equations with a random right side”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 515–555 | DOI | MR | Zbl

[4] V. E. Shapiro, V. M. Loginov, Dinamicheskie sistemy pri sluchainykh vozdeistviyakh, Nauka, Novosibirsk, 1983 | Zbl

[5] V. I. Tikhonov, “Vozdeistvie fluktuatsii na prosteishie parametricheskie sistemy”, Avtomatika i telemekhanika, 19:8 (1958), 717–724 | MR

[6] V. I. Klyatskin, Stokhasticheskie uravneniya i volny v sluchaino-neodnorodnykh sredakh, Nauka, M., 1980 | MR | Zbl

[7] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren Math. Wiss., 260, Springer-Verlag, New York–Berlin, 1984 | MR | MR | Zbl | Zbl

[8] G. Adomian, Stochastic systems, Math. Sci. Engrg., 169, Academic Press, New York–London, 1983 | MR | MR | Zbl

[9] G. Adomian, Statistical fluid mechanics: mechanics of turbulence, v. 2, Dover, Mineola, NY, 2007 | MR | Zbl | Zbl

[10] V. G. Zadorozhnii, L. N. Stroeva, “Moment functions of the solution of the Cauchy problem for a first-order linear differential equation with random coefficients”, Differ. Equ., 36:3 (2000), 423–432 | DOI | MR | Zbl

[11] V. G. Zadorozhnii, “Moment functions of the solution of the Cauchy problem for the stochastic heat equation”, Dokl. Math., 59:1 (1999), 107–109 | MR | Zbl

[12] V. G. Zadorozhnii, “On finding moment functions for the solution of the Cauchy problem for the diffusion equation with random coefficients”, Izv. Math., 66:4 (2002), 771–788 | DOI | MR | Zbl

[13] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[14] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl

[15] V. G. Zadorozhnii, “A differential equation in a Banach space, containing a variational derivative”, Siberian Math. J., 33:2 (1992), 247–258 | DOI | MR | Zbl

[16] V. G. Zadorozhnii, Metody variatsionnogo analiza, RKhD, In-t kompyuternykh issledovanii, 2006

[17] G. E. Shilov, Generalized functions and partial differential equations, Authorized English edition revised by the author, Gordon and Breach, New York–London–Paris, 1968 | MR | MR | Zbl | Zbl