Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1083-1101
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain asymptotic estimates for canonical products with
complex zeros of the form $\lambda_n=n+o(n)$. A formula is found
for the excess of the system of exponentials
$\{e^{i\lambda_nt}\}_{n\in\mathbb{Z}}$ in the space
$L^2(-\pi,\pi)$. We consider some particular cases
of sequences $\{\lambda_n\}_{n\in\mathbb{Z}}$.
Keywords:
canonical product, asymptotic estimate, slowly varying function, excess of a system.
@article{IM2_2010_74_5_a6,
author = {A. A. Yukhimenko},
title = {Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation},
journal = {Izvestiya. Mathematics },
pages = {1083--1101},
publisher = {mathdoc},
volume = {74},
number = {5},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a6/}
}
TY - JOUR AU - A. A. Yukhimenko TI - Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation JO - Izvestiya. Mathematics PY - 2010 SP - 1083 EP - 1101 VL - 74 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a6/ LA - en ID - IM2_2010_74_5_a6 ER -
A. A. Yukhimenko. Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1083-1101. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a6/