Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1083-1101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic estimates for canonical products with complex zeros of the form $\lambda_n=n+o(n)$. A formula is found for the excess of the system of exponentials $\{e^{i\lambda_nt}\}_{n\in\mathbb{Z}}$ in the space $L^2(-\pi,\pi)$. We consider some particular cases of sequences $\{\lambda_n\}_{n\in\mathbb{Z}}$.
Keywords: canonical product, asymptotic estimate, slowly varying function, excess of a system.
@article{IM2_2010_74_5_a6,
     author = {A. A. Yukhimenko},
     title = {Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation},
     journal = {Izvestiya. Mathematics },
     pages = {1083--1101},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a6/}
}
TY  - JOUR
AU  - A. A. Yukhimenko
TI  - Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1083
EP  - 1101
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a6/
LA  - en
ID  - IM2_2010_74_5_a6
ER  - 
%0 Journal Article
%A A. A. Yukhimenko
%T Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation
%J Izvestiya. Mathematics 
%D 2010
%P 1083-1101
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a6/
%G en
%F IM2_2010_74_5_a6
A. A. Yukhimenko. Canonical products generated by perturbations of the sequence of integers, and their asymptotic estimation. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1083-1101. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a6/

[1] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005

[2] R. M. Redheffer, R. M. Young, “Completeness and basis properties of complex exponentials”, Trans. Amer. Math. Soc., 277:1 (1983), 93–111 | DOI | MR | Zbl

[3] A. A. Yukhimenko, “Completeness and basis properties of systems of exponentials in weighted spaces $L^p(-\pi,\pi)$”, Math. Notes, 81:5–6 (2007), 695–707 | DOI | MR | Zbl

[4] A. M. Sedleckii, “On completeness of the systems $\{\exp(ix(n+ih_n))\}$”, Anal. Math., 4:2 (1978), 125–143 | DOI | MR | Zbl

[5] Eu. Seneta, Regularly varying functions, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl | Zbl

[6] A. A. Yukhimenko, “On a class of sine-type functions”, Math. Notes, 83:5–6 (2008), 858–870 | DOI | MR | Zbl