Solubility of a~class of second-order integro-differential equations with monotone non-linearity on a~semi-axis
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1069-1082.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a second-order integro-differential equation with locally monotone non-linearity and use special factorization methods to prove its solubility in the Sobolev space $W^2_\infty(0,+\infty)$. We also evaluate the limit of the solution at infinity in some cases.
Keywords: Sobolev space, iteration, monotonicity of a solution, Carathéodory condition.
@article{IM2_2010_74_5_a5,
     author = {Kh. A. Khachatryan},
     title = {Solubility of a~class of second-order integro-differential equations with monotone non-linearity on a~semi-axis},
     journal = {Izvestiya. Mathematics },
     pages = {1069--1082},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a5/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
TI  - Solubility of a~class of second-order integro-differential equations with monotone non-linearity on a~semi-axis
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1069
EP  - 1082
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a5/
LA  - en
ID  - IM2_2010_74_5_a5
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%T Solubility of a~class of second-order integro-differential equations with monotone non-linearity on a~semi-axis
%J Izvestiya. Mathematics 
%D 2010
%P 1069-1082
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a5/
%G en
%F IM2_2010_74_5_a5
Kh. A. Khachatryan. Solubility of a~class of second-order integro-differential equations with monotone non-linearity on a~semi-axis. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1069-1082. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a5/

[1] G. A. Baraff, “Transmission of electromagnetic waves through a conducting slab. I. The two-sided Wiener–Hopf solution”, J. Math. Phys., 9:3 (1968), 372–384 | DOI | Zbl

[2] J. Casti, R. Kalaba, Imbedding methods in applied mathematics, Addison-Wesley, Reading, MA–London–Amsterdam, 1973 | MR | Zbl

[3] E. Lifchitz, L. Pitayevski, Physique théorique, v. 10, Cinétique physique, Mir, Moscow, 1990 | MR | MR

[4] B. D. Hassard, N. D. Kazarinoff, Y.-H. Wan, Theory and applications of Hopf bifurcation, London Math. Soc. Lecture Note Ser., 41, Cambridge Univ. Press, 1981 | MR | Zbl

[5] P. J. Wengersky, W. J. Cunningham, “Time log in population models”, Gold spring harbor symposia on quantitative biology, 22, 1957

[6] J. D. Sargan, “The distribution of wealth”, Econometrica, 25:4 (1957), 568–590 | DOI | MR | Zbl

[7] A. Kh. Khachatryan, Kh. A. Khachatryan, “O razreshimosti odnogo integro-differentsialnogo uravneniya v zadache raspredeleniya dokhoda”, VII-ya Mezhdunarodnaya shkola-seminar “Mnogomernyi statisticheskii analiz i ekonometrika”, M., 2008, 151–153

[8] M. A. Krasnosel'skij, P. P. Zabrejko, E. I. Pustylnik, P. E. Sobolevskij, Integral operators in spaces of summable functions, Noordhoff, Leyden, 1976 | MR | MR | Zbl | Zbl

[9] N. B. Yengibaryan, A. Kh. Khachatryan, “Integro-differential equation of non-local wave interaction”, Sb. Math., 198:6 (2007), 839–855 | DOI | MR | Zbl

[10] Kh. A. Khachatryan, “Solvability of vector integro-differential equations of convolution type on the semiaxis”, J. Contemp. Math. Anal., 43:5 (2008), 305–316 | DOI | MR

[11] L. G. Arabadzhyan, “Ob odnom integralnom uravnenii teorii perenosa izlucheniya v neodnorodnoi srede”, Differents. uravn., 23:9 (1984), 1618–1622 | MR | Zbl

[12] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl