Stability of cascade search
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1051-1068.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find sufficient conditions on a searching multi-cascade for a modification of the set of limit points of the cascade that satisfy an assessing inequality for the distance from each of these points to the initial point to be small, provided that the modifications of the initial point and the initial set-valued functionals or maps used to construct the multi-cascade are small. Using this result, we prove the stability (in the above sense) of the cascade search for the set of common pre-images of a closed subspace under the action of $n$ set-valued maps, $n\geqslant1$ (in particular, for the set of common roots of these maps and for the set of their coincidences). For $n=2$ we obtain generalizations of some results of A. V. Arutyunov; the very statement of the problem comes from a recent paper of his devoted to the study of the stability of the subset of coincidences of a Lipschitz map and a covering map.
Keywords: stability of cascade search, set-valued map, coincidence of $n$ maps.
Mots-clés : multi-cascade
@article{IM2_2010_74_5_a4,
     author = {T. N. Fomenko},
     title = {Stability of cascade search},
     journal = {Izvestiya. Mathematics },
     pages = {1051--1068},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a4/}
}
TY  - JOUR
AU  - T. N. Fomenko
TI  - Stability of cascade search
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1051
EP  - 1068
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a4/
LA  - en
ID  - IM2_2010_74_5_a4
ER  - 
%0 Journal Article
%A T. N. Fomenko
%T Stability of cascade search
%J Izvestiya. Mathematics 
%D 2010
%P 1051-1068
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a4/
%G en
%F IM2_2010_74_5_a4
T. N. Fomenko. Stability of cascade search. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1051-1068. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a4/

[1] T. N. Fomenko, “Approximation of coincidence points and common fixed points of a collection of mappings of metric spaces”, Math. Notes, 86:1–2 (2009), 107–120 | DOI | MR | Zbl

[2] T. N. Fomenko, “Cascade search principle and its applications to the coincidence problems of $n$ one-valued or multi-valued mappings”, Topology Appl., 157:4 (2010), 760–773 | DOI | MR | Zbl

[3] T. N. Fomenko, “Cascade search of the coincidence set of collections of multivalued mappings”, Math. Notes, 86:1–2 (2009), 276–281 | DOI | MR | Zbl

[4] T. N. Fomenko, “O priblizhenii k tochkam sovpadeniya konechnogo nabora otobra- zhenii metricheskikh prostranstv”, Abstracts of “The Fifth International Conference on Diferential and Functional Diferential Equations” (Moskva, 2008), MIAN, M., 2008, 119

[5] T. N. Fomenko, “Printsip kaskadnogo poiska i sovpadeniya $N$ otobrazhenii”, Materialy mezhdunarodnoi konferentsii “Covremennye problemy matematiki, mekhaniki i ikh prilozhenii”, posvyaschennoi 70-letiyu V. A. Sadovnichego (Moskva, 2009), Izd-vo Mosk. un-ta, M., 2009, 99

[6] A. V. Arutyunov, “Stability of coincidence points and properties of covering mappings”, Math. Notes, 86:1–2 (2009), 153–158 | DOI | MR | Zbl

[7] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, URSS, M., 2005 | MR | Zbl

[8] O. D. Frolkina, “Relative preimage problem”, Math. Notes, 80:1–2 (2006), 272–283 | DOI | MR | Zbl

[9] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[10] T. N. Fomenko, “Kaskadnyi poisk: ustoichivost dostizhimykh predelnykh tochek”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2010, no. 5, 3–9