On the distribution of Frobenius numbers with three arguments
Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1023-1049.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of the limit density distribution for normalized Frobenius numbers with three arguments. The density is found explicitly.
Keywords: Frobenius numbers, Kloosterman sums, continued fractions.
@article{IM2_2010_74_5_a3,
     author = {A. V. Ustinov},
     title = {On the distribution of {Frobenius} numbers with three arguments},
     journal = {Izvestiya. Mathematics },
     pages = {1023--1049},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a3/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - On the distribution of Frobenius numbers with three arguments
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1023
EP  - 1049
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a3/
LA  - en
ID  - IM2_2010_74_5_a3
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T On the distribution of Frobenius numbers with three arguments
%J Izvestiya. Mathematics 
%D 2010
%P 1023-1049
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a3/
%G en
%F IM2_2010_74_5_a3
A. V. Ustinov. On the distribution of Frobenius numbers with three arguments. Izvestiya. Mathematics , Tome 74 (2010) no. 5, pp. 1023-1049. http://geodesic.mathdoc.fr/item/IM2_2010_74_5_a3/

[1] J. J. Sylvester, “Problem 7382”, Educational Times, 37 (1884), 26

[2] J. L. Ramírez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005 | MR | Zbl

[3] Ö. J. Rödseth, “On a linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 301 (1978), 171–178 | DOI | MR | Zbl

[4] E. S. Selmer, Ö. Beyer, “On the linear Diophantine problem of Frobenius in three variables”, J. Reine Angew. Math., 301 (1978), 161–170 | MR | Zbl

[5] R. Kannan, “Lattice translates of a polytope and the Frobenius problem”, Combinatorica, 12:2 (1992), 161–177 | DOI | MR | Zbl

[6] R. M. Karp, “Reducibility among combinatorial problems”, Complexity of computer computations (Yorktown Heights, NY, 1972), Plenum, New York, 1972, 85–103 | MR | Zbl

[7] J. L. Davison, “On the linear Diophantine problem of Frobenius”, J. Number Theory, 48:3 (1994), 353–363 | DOI | MR | Zbl

[8] V. Arnold, Arnold's problems, Springer-Verlag, Berlin, 2004 | MR | MR | Zbl | Zbl

[9] J. Bourgain, Ya. G. Sinai, “Limit behaviour of large Frobenius numbers”, Russian Math. Surveys, 62:4 (2007), 713–725 | DOI | MR | Zbl

[10] A. V. Ustinov, “On the statistical properties of elements of continued fractions”, Dokl. Math., 79:1 (2009), 87–89 | DOI | MR

[11] V. Shchur, Ya. Sinai, A. Ustinov, “Limiting distribution of Frobenius numbers for $n=3$”, J. Number Theory, 129:11 (2009), 2778–2789 | DOI | MR | Zbl

[12] I. Aliev, M. Henk, “Integer knapsacks: average behavior of the Frobenius numbers”, Math. Oper. Res., 34:3 (2009), 698–705 | DOI | MR

[13] I. Aliev, M. Henk, A. Hinrichs, “Expected Frobenius numbers”, J. Combin. Theory Ser. A (to appear) , arXiv: 0910.2620 | DOI

[14] J. Marklof, “The asymptotic distribution of Frobenius numbers”, Invent. Math., 181:1 (2010), 179–207 | DOI

[15] A. V. Ustinov, “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | MR | Zbl

[16] V. A. Bykovskii, “Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l\ (\operatorname{mod}q)$”, J. Soviet Math., 25:2 (1984), 975–988 | DOI | MR | Zbl | Zbl

[17] A. V. Ustinov, “On the number of solutions of the congruence $xy\equiv l(\operatorname{mod}q)$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20:5 (2009), 597–627 | DOI | MR

[18] T. Estermann, “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86 | DOI | MR | Zbl

[19] S. M. Johnson, “A linear diophantine problem”, Canad. J. Math., 12 (1960), 390–398 | MR | Zbl

[20] Ö. J. Rödseth, “Weighted multi-connected loop networks”, Discrete Math., 148:1–3 (1996), 161–173 | DOI | MR | Zbl

[21] C. K. Wong, D. Coppersmith, “A Combinatorial problem related to multimodule memory organizations”, J. Assoc. Comput. Mach., 21:3 (1974), 392–402 | DOI | MR | Zbl

[22] J. C. Rosales, P. A. García-Sáanchez, “Numerical semigroups with embedding dimension three”, Arch. Math. (Basel), 83:6 (2004), 488–496 | DOI | MR | Zbl