On polynomial integrals of a~mechanical system on a~two-dimensional torus
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 805-817.

Voir la notice de l'article provenant de la source Math-Net.Ru

We shall show that if a natural mechanical system defined on a two-dimensional torus and having a real analytic potential possesses a polynomial integral of odd degree in momenta, then the leading coefficients in the momenta satisfy two identities of a special form. We also show that if the system possesses an integral of the fifth degree in momenta, then there exists an integral of the first degree in momenta.
Keywords: integrable Hamiltonian system, polynomial integral.
@article{IM2_2010_74_4_a7,
     author = {A. E. Mironov},
     title = {On polynomial integrals of a~mechanical system on a~two-dimensional torus},
     journal = {Izvestiya. Mathematics },
     pages = {805--817},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a7/}
}
TY  - JOUR
AU  - A. E. Mironov
TI  - On polynomial integrals of a~mechanical system on a~two-dimensional torus
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 805
EP  - 817
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a7/
LA  - en
ID  - IM2_2010_74_4_a7
ER  - 
%0 Journal Article
%A A. E. Mironov
%T On polynomial integrals of a~mechanical system on a~two-dimensional torus
%J Izvestiya. Mathematics 
%D 2010
%P 805-817
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a7/
%G en
%F IM2_2010_74_4_a7
A. E. Mironov. On polynomial integrals of a~mechanical system on a~two-dimensional torus. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 805-817. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a7/

[1] M. L. Byalyi, “First integrals that are polynomial in momenta for a mechanical system on a two-dimensional torus”, Funct. Anal. Appl., 21:4 (1987), 310–312 | DOI | MR | Zbl

[2] N. V. Denisova, V. V. Kozlov, “Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space”, Sb. Math., 191:2 (2000), 189–208 | DOI | MR | Zbl

[3] V. V. Kozlov, D. V. Treshchëv, “On the integrability of Hamiltonian systems with toral position space”, Math. USSR-Sb., 63:1 (1989), 121–139 | DOI | MR | Zbl

[4] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20:6 (1979), 1413–1415 | MR | Zbl

[5] S. V. Bolotin, “First integrals of systems with gyroscopic forces”, Moscow Univ. Math. Bull., 39:6 (1984), 20–28 | MR | Zbl

[6] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996 | MR | MR | Zbl | Zbl