Real three-dimensional biquadrics
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 781-804.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the topological types of biquadrics (complete intersections of two real four-dimensional quadrics). The rigid isotopy classes of real three-dimensional biquadrics were described long ago: there are nine such classes. We find the correspondence between the topological types of real biquadrics and their rigid isotopy classes, and show that only two rigid isotopy classes have the same topological type. One of these classes consists of real $\operatorname{GM}$-varieties and the other contains no $\operatorname{GM}$-varieties. We also study the sets of real lines on real biquadrics.
Keywords: maximal variety, intermediate Jacobian, Abelian surface.
Mots-clés : biquadric, discriminant hypersurface
@article{IM2_2010_74_4_a6,
     author = {V. A. Krasnov},
     title = {Real three-dimensional biquadrics},
     journal = {Izvestiya. Mathematics },
     pages = {781--804},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a6/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real three-dimensional biquadrics
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 781
EP  - 804
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a6/
LA  - en
ID  - IM2_2010_74_4_a6
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real three-dimensional biquadrics
%J Izvestiya. Mathematics 
%D 2010
%P 781-804
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a6/
%G en
%F IM2_2010_74_4_a6
V. A. Krasnov. Real three-dimensional biquadrics. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 781-804. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a6/

[1] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl

[2] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[3] A. I. Degtyarev, V. M. Kharlamov, “Topological properties of real algebraic varieties: du coté de chez Rokhlin”, Russian Math. Surveys, 55:4 (2000), 735–814 | DOI | MR | Zbl

[4] A. A. Agrachev, R. V. Gamkrelidze, “Quadratic maps and smooth vector-valued functions: Euler characteristics of level sets”, J. Soviet Math., 55:4 (1991), 1892–1928 | DOI | MR | Zbl | Zbl

[5] S. López de Medrano, “Topology of the intersection of quadrics in $\mathbb{R}^n$”, Algebraic topology (Arcata, CA, 1986), Lecture Notes in Math., 1370, Springer-Verlag, Berlin, 1989, 280–292 | DOI | MR | Zbl

[6] C. T. C. Wall, “Stability, pencils and polytopes”, Bull. London Math. Soc., 12:6 (1980), 401–421 | DOI | MR | Zbl

[7] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl

[8] I. Dolgachev, Topics in classical algebraic geometry, www.math.lsa.umich.edu/<nobr>$\sim$</nobr>idolga/ topics1.pdf

[9] M. Reid, The complete intersection of two or more quadrics, Cambridge Ph. D. thesis, Jun 1972; www.warwick.ac.uk/<nobr>$\sim$</nobr>masada/ 3folds/ qu.pdf

[10] P. Muth, “Über reelle Äquivalenz aus Scharen reeller quadratischer Formen”, J. für die reine und angew. Math. (Crelle), 128 (1905), 302–321 | DOI

[11] V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | MR | Zbl

[12] A. Comessatti, “Sulle varietà abeliane reali”, Ann. Mat. Pura Appl., 2:1 (1925), 67–106 | DOI | MR | Zbl

[13] V. A. Krasnov, “Albanese mapping for real algebraic varieites”, Math. Notes, 32:3 (1982), 661–666 | DOI | MR | Zbl