Mots-clés : biquadric, discriminant hypersurface
@article{IM2_2010_74_4_a6,
author = {V. A. Krasnov},
title = {Real three-dimensional biquadrics},
journal = {Izvestiya. Mathematics},
pages = {781--804},
year = {2010},
volume = {74},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a6/}
}
V. A. Krasnov. Real three-dimensional biquadrics. Izvestiya. Mathematics, Tome 74 (2010) no. 4, pp. 781-804. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a6/
[1] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl
[2] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[3] A. I. Degtyarev, V. M. Kharlamov, “Topological properties of real algebraic varieties: du coté de chez Rokhlin”, Russian Math. Surveys, 55:4 (2000), 735–814 | DOI | MR | Zbl
[4] A. A. Agrachev, R. V. Gamkrelidze, “Quadratic maps and smooth vector-valued functions: Euler characteristics of level sets”, J. Soviet Math., 55:4 (1991), 1892–1928 | DOI | MR | Zbl | Zbl
[5] S. López de Medrano, “Topology of the intersection of quadrics in $\mathbb{R}^n$”, Algebraic topology (Arcata, CA, 1986), Lecture Notes in Math., 1370, Springer-Verlag, Berlin, 1989, 280–292 | DOI | MR | Zbl
[6] C. T. C. Wall, “Stability, pencils and polytopes”, Bull. London Math. Soc., 12:6 (1980), 401–421 | DOI | MR | Zbl
[7] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl
[8] I. Dolgachev, Topics in classical algebraic geometry, www.math.lsa.umich.edu/<nobr>$\sim$</nobr>idolga/ topics1.pdf
[9] M. Reid, The complete intersection of two or more quadrics, Cambridge Ph. D. thesis, Jun 1972; www.warwick.ac.uk/<nobr>$\sim$</nobr>masada/ 3folds/ qu.pdf
[10] P. Muth, “Über reelle Äquivalenz aus Scharen reeller quadratischer Formen”, J. für die reine und angew. Math. (Crelle), 128 (1905), 302–321 | DOI
[11] V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | MR | Zbl
[12] A. Comessatti, “Sulle varietà abeliane reali”, Ann. Mat. Pura Appl., 2:1 (1925), 67–106 | DOI | MR | Zbl
[13] V. A. Krasnov, “Albanese mapping for real algebraic varieites”, Math. Notes, 32:3 (1982), 661–666 | DOI | MR | Zbl