Spaces of differential forms and maps with controlled distortion
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 663-689.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study necessary and sufficient conditions for an approximately differentiable map $f\colon\mathbb M\to\mathbb M'$ between Riemannian manifolds to induce a bounded transfer operator of differential forms with respect to the norms of Lebesgue spaces. As a corollary, we see that every homeomorphism $f\colon\mathbb M\to\mathbb M'$ of class $\operatorname{ACL}(\mathbb M)$ whose transfer operator of differential forms with norm in $\mathcal L_p$ is an isomorphism must necessarily be either quasi-conformal or quasi-isometric. We give some applications of our results to the study of the functoriality of cohomology in Lebesgue spaces.
Keywords: Lebesgue space of differential forms, distortion of a map, quasi-conformal mapping, cohomology of Riemannian spaces.
@article{IM2_2010_74_4_a1,
     author = {S. K. Vodop'yanov},
     title = {Spaces of differential forms and maps with controlled distortion},
     journal = {Izvestiya. Mathematics },
     pages = {663--689},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a1/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
TI  - Spaces of differential forms and maps with controlled distortion
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 663
EP  - 689
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a1/
LA  - en
ID  - IM2_2010_74_4_a1
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%T Spaces of differential forms and maps with controlled distortion
%J Izvestiya. Mathematics 
%D 2010
%P 663-689
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a1/
%G en
%F IM2_2010_74_4_a1
S. K. Vodop'yanov. Spaces of differential forms and maps with controlled distortion. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 663-689. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a1/

[1] H. Federer, Geometric measure theory, Springer-Verlag, Berlin–Heidelberg–New York, 1969 | MR | MR | Zbl | Zbl

[2] M. Giaquinta, G. Modica, J. Souček, Cartesian currents in the calculus of variations, v. I, Ergeb. Math. Grenzgeb. (3), 37, Springer-Verlag, Berlin, 1998 | MR | Zbl

[3] S. K. Vodopyanov, Funktsionalno-teoreticheskii podkhod k nekotorym zadacham teorii prostranstvennykh kvazikonformnykh otobrazhenii, Dis. ... kand. fiz.-matem. nauk, Sib. otdelenie AN SSSR, In-t matematiki, Novosibirsk, 1975

[4] S. K. Vodop'yanov, V. M. Gol'dshtein, “Quasiconformal mappings and spaces of functions with generalized first derivatives”, Siberian Math. J., 17:3 (1976), 399–411 | DOI | MR | Zbl

[5] J. M. Ball, “Global invertibility of Sobolev functions and the interpenetration of matter”, Proc. Roy. Soc. Edinburgh Sect. A, 88:3–4 (1981), 315–328 | MR | Zbl

[6] T. Iwaniec, V. Šverák, “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118:1 (1993), 181–188 | DOI | MR | Zbl

[7] J. Heinonen, P. Koskela, “Sobolev mappings with integrable dilatations”, Arch. Rational Mech. Anal., 125:1 (1993), 81–97 | DOI | MR | Zbl

[8] S. Müller, Q. Tang, B. S. Yan, “On a new class of elastic deformations not allowing for cavitation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11:2 (1994), 217–243 | MR | Zbl

[9] J. J. Manfredi, E. Villamor, “Mappings with integrable dilatation in higher dimensions”, Bull. Amer. Math. Soc. (N.S.), 32:2 (1995), 235–240 | DOI | MR | Zbl

[10] J. Kauhanen, P. Koskela, J. Malý, “Mappings of finite distortion: condition $N$”, Michigan Math. J., 49:1 (2001), 169–181 | DOI | MR | Zbl

[11] M. Troyanov, S. Vodop'yanov, “Liouville type theorems for mappings with bounded (co)-distortion”, Ann. Inst. Fourier (Grenoble), 52:6 (2002), 1753–1784 | MR | Zbl

[12] S. K. Vodopyanov, “Operatory podstanovki prostranstv Soboleva”, Sovremennye problemy teorii funktsii i ikh prilozheniya (Saratov, 2002), Saratov, 2002, 42–43

[13] S. K. Vodop'yanov, “Composition operators on Sobolev spaces”, Complex analysis and dynamical systems II (Nahariya, Israel, 2003), Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 401–415 | MR | Zbl

[14] S. K. Vodopyanov, “$L_p$-teoriya potentsiala i kvazikonformnye otobrazheniya na odnorodnykh gruppakh”, Sovremennye problemy geometrii i analiza, Nauka, Novosibirsk, 1989, 45–89 | MR | Zbl

[15] S. K. Vodopyanov, Geometricheskie aspekty prostranstv obobschenno-differentsiruemykh funktsii, Dis. ... dokt. fiz.-matem. nauk, In-t matematiki im. S. L. Soboleva, Novosibirsk, 1992

[16] S. K. Vodop'yanov, “On regularity of mappings inverse to Sobolev mappings”, Dokl. Math., 78:3 (2008), 891–895 | DOI | MR

[17] S. K. Vodop'yanov, S. K. Ukhlov, “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Siberian Adv. Math., 14:4 (2004), 78–125 | MR | MR | Zbl | Zbl

[18] S. K. Vodop'yanov, A. D. Ukhlov, “Superposition operators in Sobolev spaces”, Russian Math. (Iz. VUZ), 46:10 (2002), 9–31 | MR | Zbl

[19] S. K. Vodop'yanov, A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Siberian Math. J., 39:4 (1998), 665–682 | DOI | MR | Zbl

[20] S. K. Vodop'yanov, V. M. Gol'dshtein, “Lattice isomorphisms of the spaces $W^1_n$ and quasiconformal mappings”, Siberian Math. J., 16:2 (1975), 174–189 | DOI | MR | Zbl | Zbl

[21] S. K. Vodop'yanov, V. M. Gol'dshtein, “Functional characteristics of quasiisometric mappings”, Siberian Math. J., 17:4 (1976), 580–584 | DOI | MR | Zbl | Zbl

[22] A. S. Romanov, “O zamene peremennoi v prostranstvakh potentsialov Besselya i Rissa”, Funktsionalnyi analiz i matematicheskaya fizika, Sib. otdelenie AN SSSR, In-t matematiki, Novosibirsk, 1985, 117–133 | MR | Zbl

[23] F. W. Gehring, “Lipschitz mappings and the $p$-capacity of rings in $n$-space”, Advances in the theory of Riemann surfaces (Stony Brook, NY, 1969), Princeton Univ. Press, Princeton, NJ, 1971, 175–193 | MR | Zbl

[24] W. Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergeb. Math. Grenzgeb. (3), 44, Springer-Verlag, Berlin, 2002 | MR | Zbl

[25] V. M. Gol'dshtein, V. I. Kuz'minov, I. A. Shvedov, “Differential forms on Lipschitz manifolds”, Siberian Math. J., 23:2 (1982), 151–161 | DOI | MR | Zbl

[26] V. M. Gol'dshtein, V. I. Kuz'minov, I. A. Shvedov, “Integration of differential forms of the classes $W^*_{p,q}$”, Siberian Math. J., 23:5 (1982), 640–653 | DOI | MR | Zbl

[27] V. M. Gol'dshtein, V. I. Kuz'minov, I. A. Shvedov, “Normal and compact solvability of linear operators”, Siberian Math. J., 30:5 (1989), 704–712 | DOI | MR | Zbl

[28] V. M. Gol'dshtein, V. I. Kuz'minov, I. A. Shvedov, “The Künneth formula for $L_p$-cohomologies of warped products”, Siberian Math. J., 32:5 (1991), 749–760 | DOI | MR | Zbl | Zbl

[29] V. I. Kuz'minov, I. A. Shvedov, “On compact solvability of the operator of exterior derivation”, Siberian Math. J., 38:3 (1997), 492–506 | DOI | MR | Zbl

[30] M. Gromov, Asymptotic invariants of infinite groups (Sussex, 1991), v. 2, London Math. Soc. Lecture Note Ser., 182, Geometric group theory, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[31] P. Pansu, Cohomologie $L^p$, espaces homogènes et pincement, www.math.u-psud.fr/<nobr>$\sim$</nobr>pansu/ liste-prepub.html

[32] P. Pansu, “$L^p$-cohomology and pinching”, Rigidity in dynamics and geometry (Cambridge, UK, 2000), Springer-Verlag, Berlin, 2002, 379–389 | MR | Zbl

[33] P. Pansu, “Cohomologie $L^p$ en degré 1 des espaces homogènes”, Potential Anal., 27:2 (2007), 151–165 | DOI | MR | Zbl

[34] T. Iwaniec, G. Martin, Geometric function theory and nonlinear analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001 | MR | Zbl

[35] M. Bonk, Ju. Heinonen, “Quasiregular mapping and cohomology”, Acta Math., 186:2 (2001), 219–238 | DOI | MR | Zbl

[36] V. Gol'dshtein, M. Troyanov, A conformal de Rham complex, arXiv: abs/0711.1286

[37] Yu. G. Reshetnyak, “Sobolev-type classes of functions with values in a metric space”, Siberian Math. J., 38:3 (1997), 567–583 | DOI | MR | Zbl

[38] S. K. Vodop'yanov, “$\mathscr P$-differentiability on Carnot groups in different topologies and related topics”, Proceedings on analysis and geometry (Novosibirsk, 1999), Sobolev Institute Press, Novosibirsk, 2000, 603–670 | MR | Zbl

[39] P. Hajłasz, “Change of variables formula under minimal assumptions”, Colloq. Math., 64:1 (1993), 93–101 | MR | Zbl

[40] T. Rado, P. V. Reichelderfer, Continuous transformations in analysis with an introduction to algebraic topology, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955 | MR | Zbl

[41] V. Gol'dshtein, M. Troyanov, “Distortion of mappings and $L_{q,p}$-cohomology”, Math. Z., 264:2 (2010), 279–293 | DOI | MR | Zbl

[42] S. L. Sobolev, “O nekotorykh gruppakh preobrazovanii $n$-mernogo prostranstva”, Dokl. AN SSSR, 32:6 (1941), 380–382 | MR | Zbl

[43] V. G. Mazya, Klassy mnozhestv i teoremy vlozheniya funktsionalnykh klassov. Nekotorye problemy teorii ellipticheskikh operatorov, Dis. ... kand. fiz.-matem. nauk, LGU, L., 1961

[44] V. G. Maz'ya, T. O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Monogr. Stud. Math., 23, Pitman, Boston–London–Melbourne, 1985 | MR | MR | Zbl | Zbl

[45] H. M. Reimann, “Über harmonische Kapazität und quasikonforme Abbildungen im Raum”, Comment. Math. Helv., 44 (1969), 284–307 | MR | Zbl

[46] J. Lelong-Ferrand, “Étude d'une classe d'applications liées à des homomorphismes d'algébres de fonctions, et généralisant les quasi conformes”, Duke Math. J., 40:1 (1973), 163–186 | DOI | MR | Zbl

[47] S. K. Vodopyanov, Formula Teilora i funktsionalnye prostranstva, NGU, Novosibirsk, 1988 | MR | Zbl

[48] S. K. Vodopyanov, “Vesovye prostranstva Soboleva i teoriya otobrazhenii”, Tez. dokladov Vsesoyuznoi matematicheskoi shkoly “Teoriya potentsiala” (Katsiveli, 1991), In-t matem. AN USSR, Kiev, 1991, 7

[49] G. D. Mostow, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Inst. Hautes Études Sci. Publ. Math., 34:1 (1968), 53–104 | DOI | MR | Zbl

[50] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[51] Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl

[52] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[53] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., Clarendon Press, Oxford, 1993 | MR | Zbl

[54] S. K. Vodopyanov, “Foundations of the theory of mappings with bounded distortion on Carnot groups”, The interaction of analysis and geometry (Novosibirsk, 2004), Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 303–344 | MR | Zbl

[55] Yu. G. Reshetnyak, “The concept of capacity in the theory of functions with generalized derivatives”, Siberian Math. J., 10:5 (1969), 818–842 | DOI | MR | Zbl

[56] S. K. Vodop'yanov, V. M. Chernikov, “Sobolev spaces and hypoelliptic equations. I”, Siberian Adv. Math., 6:3 (1996), 27–67 ; “Sobolev spaces and hypoelliptic equations. II”, 6:4 (1996), 64–96 | MR | MR | Zbl

[57] J. G. Rešetnjak, “Generalized derivatives and differentiability almost everywhere”, Math. USSR-Sb., 4:3 (1968), 293–302 | DOI | MR | Zbl | Zbl

[58] S. K. Vodop'yanov, “Differentiability of maps of Carnot groups of Sobolev classes”, Sb. Math., 194:6 (2003), 857–877 | DOI | MR | Zbl

[59] J. J. Manfredi, “Weakly monotone functions”, J. Geom. Anal., 4:3 (1994), 393–402 | MR | Zbl

[60] F. Hang, F. Lin, “Topology of Sobolev mappings”, Math. Res. Lett., 8:3 (2001), 321–330 ; “II”, Acta Math., 191:1 (2003), 55–107 ; “III”, Comm. Pure Appl. Math., 56:10 (2003), 1383–1415 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[61] P. Hajłasz, “Sobolev mappings between manifolds and metric spaces”, Sobolev spaces in mathematics, v. I, Int. Math. Ser. (N. Y.), 8, Springer-Verlag, New York, 2009, 185–222 ; www.pitt.edu/<nobr>$\sim$</nobr>hajlasz/OriginalPublications/ Publications3.html | MR | Zbl

[62] S. K. Vodop'yanov, “Spaces of differential forms and mappings with controlled distortion”, Dokl. Math., 79:1 (2009), 105–109 | DOI | MR