Spaces of differential forms and maps with controlled distortion
Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 663-689

Voir la notice de l'article provenant de la source Math-Net.Ru

We study necessary and sufficient conditions for an approximately differentiable map $f\colon\mathbb M\to\mathbb M'$ between Riemannian manifolds to induce a bounded transfer operator of differential forms with respect to the norms of Lebesgue spaces. As a corollary, we see that every homeomorphism $f\colon\mathbb M\to\mathbb M'$ of class $\operatorname{ACL}(\mathbb M)$ whose transfer operator of differential forms with norm in $\mathcal L_p$ is an isomorphism must necessarily be either quasi-conformal or quasi-isometric. We give some applications of our results to the study of the functoriality of cohomology in Lebesgue spaces.
Keywords: Lebesgue space of differential forms, distortion of a map, quasi-conformal mapping, cohomology of Riemannian spaces.
@article{IM2_2010_74_4_a1,
     author = {S. K. Vodop'yanov},
     title = {Spaces of differential forms and maps with controlled distortion},
     journal = {Izvestiya. Mathematics },
     pages = {663--689},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a1/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
TI  - Spaces of differential forms and maps with controlled distortion
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 663
EP  - 689
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a1/
LA  - en
ID  - IM2_2010_74_4_a1
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%T Spaces of differential forms and maps with controlled distortion
%J Izvestiya. Mathematics 
%D 2010
%P 663-689
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a1/
%G en
%F IM2_2010_74_4_a1
S. K. Vodop'yanov. Spaces of differential forms and maps with controlled distortion. Izvestiya. Mathematics , Tome 74 (2010) no. 4, pp. 663-689. http://geodesic.mathdoc.fr/item/IM2_2010_74_4_a1/