Mixed volume forms and a complex equation of Monge--Amp\`ere type on K\"ahler manifolds of positive curvature
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 501-514
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a generalization of the Calabi problem. In the analytic set-up
on a Kähler manifold, it leads to a complex Monge–Ampère equation
containing the mixed discriminant of the given and unknown metrics. We
obtain sufficient conditions for its solubility in the case when the Kähler
manifold is $\delta$-pinched ($\delta>1/2$).
Keywords:
Kähler manifold, Monge–Ampère equation.
@article{IM2_2010_74_3_a3,
author = {V. N. Kokarev},
title = {Mixed volume forms and a complex equation of {Monge--Amp\`ere} type on {K\"ahler} manifolds of positive curvature},
journal = {Izvestiya. Mathematics },
pages = {501--514},
publisher = {mathdoc},
volume = {74},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a3/}
}
TY - JOUR AU - V. N. Kokarev TI - Mixed volume forms and a complex equation of Monge--Amp\`ere type on K\"ahler manifolds of positive curvature JO - Izvestiya. Mathematics PY - 2010 SP - 501 EP - 514 VL - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a3/ LA - en ID - IM2_2010_74_3_a3 ER -
V. N. Kokarev. Mixed volume forms and a complex equation of Monge--Amp\`ere type on K\"ahler manifolds of positive curvature. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 501-514. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a3/