The eigenvalue function of a family of Sturm--Liouville operators
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 439-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a function $\mu^-(\gamma)$ in such a way that its value at every point $\gamma\in(-\infty,\pi)$, $\gamma=\beta-\pi n$, $\beta\in[0,\pi)$, $n=0,1,2,\dots$, coincides with an eigenvalue $\mu_n(\alpha,\beta)$ of the Sturm–Liouville problem $-y''+q(x)y=\mu y$, $y(0)\cos\alpha+y'(0)\sin\alpha=0$, $y(\pi)\cos\beta+y'(\pi)\sin\beta=0$ (for some $\alpha\,{\in}\,(0,\pi]$). We find necessary and sufficient conditions for a function to have this property for a real $q\in L^1[0,\pi]$.
Keywords: eigenvalue function, inverse problem.
Mots-clés : Sturm–Liouville problem
@article{IM2_2010_74_3_a0,
     author = {T. N. Harutyunyan},
     title = {The eigenvalue function of a family of {Sturm--Liouville} operators},
     journal = {Izvestiya. Mathematics },
     pages = {439--459},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a0/}
}
TY  - JOUR
AU  - T. N. Harutyunyan
TI  - The eigenvalue function of a family of Sturm--Liouville operators
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 439
EP  - 459
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a0/
LA  - en
ID  - IM2_2010_74_3_a0
ER  - 
%0 Journal Article
%A T. N. Harutyunyan
%T The eigenvalue function of a family of Sturm--Liouville operators
%J Izvestiya. Mathematics 
%D 2010
%P 439-459
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a0/
%G en
%F IM2_2010_74_3_a0
T. N. Harutyunyan. The eigenvalue function of a family of Sturm--Liouville operators. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 439-459. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a0/

[1] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[2] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel, 1986 | MR | MR | Zbl | Zbl

[3] E. L. Isaacson, E. Trubowitz, “The inverse Sturm–Liouville problem. I”, Comm. Pure Appl. Math., 36:6 (1983), 767–783 | DOI | MR | Zbl

[4] E. L. Isaacson, H. P. Mckean, E. Trubowitz, “The inverse Sturm–Liouville problem. II”, Comm. Pure Appl. Math., 37:1 (1984), 1–11 | DOI | MR | Zbl

[5] B. E. J. Dahlberg, E. Trubowitz, “The inverse Sturm–Liouville problem. III”, Comm. Pure Appl. Math., 37:2 (1984), 255–267 | DOI | MR | Zbl

[6] J. Pöschel, E. Trubowitz, Inverse spectral theory, Pure Appl. Math., 130, Academic Press, Boston, MA, 1987 | MR | Zbl

[7] V. V. Žikov, “On inverse Sturm–Liouville problems on a finite segment”, Math. USSR-Izv., 1:5 (1967), 923–934 | DOI | MR | Zbl

[8] V. A. Marchenko, “Some questions in the theory of one-dimensional linear differential operators of the second order. I”, Trans. Amer. Math. Soc., 101 (1973), 1–104 | MR | Zbl | Zbl

[9] T. N. Arutyunyan, H. R. Navasardyan, “Eigenvalue function of a family of Sturm–Liouville operators”, J. Contemp. Math. Anal., 35:5 (2001), 5–15 | MR | Zbl

[10] B. M. Levitan, M. G. Gasymov, “Determination of a differential equation by two of its spectra”, Russian Math. Surveys, 19:2 (1964), 1–63 | DOI | MR | Zbl

[11] Yu. N. Bibikov, Obschii kurs obyknovennykh differentsialnykh uravnenii, Izd-vo Leningr. un-ta, L., 1981 | MR | Zbl

[12] T. N. Arutyunyan, M. S. Ovsepyan, “O resheniyakh uravneniya Shturma–Liuvillya”, Matematika v Vysshei shkole (Erevan), 1:3 (2005), 59–74

[13] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[14] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl | Zbl