The eigenvalue function of a family of Sturm--Liouville operators
Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 439-459

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a function $\mu^-(\gamma)$ in such a way that its value at every point $\gamma\in(-\infty,\pi)$, $\gamma=\beta-\pi n$, $\beta\in[0,\pi)$, $n=0,1,2,\dots$, coincides with an eigenvalue $\mu_n(\alpha,\beta)$ of the Sturm–Liouville problem $-y''+q(x)y=\mu y$, $y(0)\cos\alpha+y'(0)\sin\alpha=0$, $y(\pi)\cos\beta+y'(\pi)\sin\beta=0$ (for some $\alpha\,{\in}\,(0,\pi]$). We find necessary and sufficient conditions for a function to have this property for a real $q\in L^1[0,\pi]$.
Keywords: eigenvalue function, inverse problem.
Mots-clés : Sturm–Liouville problem
@article{IM2_2010_74_3_a0,
     author = {T. N. Harutyunyan},
     title = {The eigenvalue function of a family of {Sturm--Liouville} operators},
     journal = {Izvestiya. Mathematics },
     pages = {439--459},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a0/}
}
TY  - JOUR
AU  - T. N. Harutyunyan
TI  - The eigenvalue function of a family of Sturm--Liouville operators
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 439
EP  - 459
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a0/
LA  - en
ID  - IM2_2010_74_3_a0
ER  - 
%0 Journal Article
%A T. N. Harutyunyan
%T The eigenvalue function of a family of Sturm--Liouville operators
%J Izvestiya. Mathematics 
%D 2010
%P 439-459
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a0/
%G en
%F IM2_2010_74_3_a0
T. N. Harutyunyan. The eigenvalue function of a family of Sturm--Liouville operators. Izvestiya. Mathematics , Tome 74 (2010) no. 3, pp. 439-459. http://geodesic.mathdoc.fr/item/IM2_2010_74_3_a0/