Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 325-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first mixed problem in a cylindrical domain $D=(0,\infty)\times\Omega$ for a pseudo-differential parabolic equation with homogeneous Dirichlet boundary conditions and a finitely supported initial function. We find upper bounds for the $L_2$-norm of a solution as $t\to\infty$ in terms of a geometric characteristic introduced earlier by the author for an unbounded domain $\Omega\subset\mathbb R^n$, $n\geqslant 2$, in the case of a higher-order parabolic equation.
Keywords: stabilization of solutions, pseudo-differential parabolic equations, unbounded domain, mixed problem.
@article{IM2_2010_74_2_a3,
     author = {L. M. Kozhevnikova},
     title = {Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains},
     journal = {Izvestiya. Mathematics },
     pages = {325--345},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a3/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 325
EP  - 345
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a3/
LA  - en
ID  - IM2_2010_74_2_a3
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains
%J Izvestiya. Mathematics 
%D 2010
%P 325-345
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a3/
%G en
%F IM2_2010_74_2_a3
L. M. Kozhevnikova. Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 325-345. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a3/

[1] A. K. Gushchin, “On estimates of the solutions of boundary value problems for a parabolic equation of second order”, Proc. Steklov Inst. Math., 126 (1975), 1–46 | MR | Zbl | Zbl

[2] A. K. Guščin, “Stabilization of the solutions of the second boundary value problem for a second order parabolic equation”, Math. USSR-Sb., 30:4 (1976), 403–440 | DOI | MR | Zbl | Zbl

[3] F. H. Mukminov, “Stabilization of solutions of the first mixed problem for a parabolic equation of second order”, Math. USSR-Sb., 39:4 (1981), 449–467 | DOI | MR | Zbl | Zbl

[4] F. H. Mukminov, “Decrease with time of the norm of a solution of a mixed problem for a high-order parabolic equation”, Differential Equations, 23:10 (1987), 1215–1220 | MR | Zbl | Zbl

[5] A. F. Tedeev, “Stabilization of solutions of a first mixed boundary-value problem for a high-order quasilinear parabolic equation”, Differential Equations, 25:3 (1989), 346–352 | MR | Zbl

[6] L. M. Kozhevnikova, F. Kh. Mukminov, “Estimates of the stabilization rate as $t\to\infty$ of solutions of the first mixed problem for a quasilinear system of second-order parabolic equations”, Sb. Math., 191:2 (2000), 235–273 | DOI | MR | Zbl

[7] F. Kh. Mukminov, I. M. Bikkulov, “Stabilization of the norm of the solution of a mixed problem in an unbounded domain for parabolic equations of orders 4 and 6”, Sb. Math., 195:3 (2004), 413–440 | DOI | MR | Zbl

[8] L. M. Kozhevnikova, “Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation”, Sb. Math., 196:7 (2005), 999–1032 | DOI | MR | Zbl

[9] L. M. Kozhevnikova, F. Kh. Mukminov, “Decay of solutions of the first mixed problem for a high-order parabolic equation with minor terms”, J. Math. Sci. (N. Y.), 150:5 (2008), 2369–2383 | DOI | MR | Zbl

[10] O. A. Oleinik, G. A. Iosifyan, “O edinstvennosti resheniya smeshannoi zadachi dlya uravnenii teorii uprugosti v neogranichennoi oblasti”, UMN, 31:5 (1976), 247–248 | MR | Zbl

[11] L. M. Kozhevnikova, “Behaviour at infinity of solutions of pseudodifferential elliptic equations in unbounded domains”, Sb. Math., 199:8 (2008), 1169–1200 | DOI | MR

[12] O. A. Ladyż̌enskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl