Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains
Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 325-345
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the first mixed problem in a cylindrical domain $D=(0,\infty)\times\Omega$ for a pseudo-differential parabolic equation with homogeneous Dirichlet boundary conditions and a finitely supported initial function. We find upper bounds for the $L_2$-norm of a solution as $t\to\infty$ in terms of a geometric characteristic introduced earlier by the author for an unbounded domain $\Omega\subset\mathbb R^n$, $n\geqslant 2$, in the case of a higher-order parabolic equation.
Keywords:
stabilization of solutions, pseudo-differential parabolic equations, unbounded domain, mixed problem.
@article{IM2_2010_74_2_a3,
author = {L. M. Kozhevnikova},
title = {Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains},
journal = {Izvestiya. Mathematics },
pages = {325--345},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a3/}
}
TY - JOUR AU - L. M. Kozhevnikova TI - Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains JO - Izvestiya. Mathematics PY - 2010 SP - 325 EP - 345 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a3/ LA - en ID - IM2_2010_74_2_a3 ER -
L. M. Kozhevnikova. Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains. Izvestiya. Mathematics , Tome 74 (2010) no. 2, pp. 325-345. http://geodesic.mathdoc.fr/item/IM2_2010_74_2_a3/