Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals
Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 189-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on the exact asymptotic behaviour of the integrals $$ \mathsf{E}\exp\biggl\{u\biggl(\int_0^1|\xi(t)|^p\,dt\biggr)^{\alpha/p}\biggr\}, \quad \mathsf{E}\exp\biggl\{-u\int_0^1|\xi(t)|^p\,dt\biggr\}, \qquad u\to\infty, $$ for $p>0$ and $0\alpha2$ for two random processes $\xi(t)$, namely, the Wiener process and the Brownian bridge, and obtain other related results. Our approach is via the Laplace method for infinite-dimensional distributions, namely, Gaussian measures and the occupation time for Markov processes.
Keywords: large deviation, Gaussian process, Markov process, covariance operator, generating operator, Schrödinger operator, hypergeometric function.
Mots-clés : occupation time
@article{IM2_2010_74_1_a4,
     author = {V. R. Fatalov},
     title = {Exact asymptotics of {Laplace-type} {Wiener} integrals for $L^p$-functionals},
     journal = {Izvestiya. Mathematics },
     pages = {189--216},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a4/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 189
EP  - 216
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a4/
LA  - en
ID  - IM2_2010_74_1_a4
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals
%J Izvestiya. Mathematics 
%D 2010
%P 189-216
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a4/
%G en
%F IM2_2010_74_1_a4
V. R. Fatalov. Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals. Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 189-216. http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a4/

[1] M. Kac, “On the average of a certain Wiener functional and a related limit theorem in calculus of probability”, Trans. Amer. Math. Soc., 59:3 (1946), 401–414 | DOI | MR | Zbl

[2] M. Kac, “On distributions of certain Wiener functionals”, Trans. Amer. Math. Soc., 65:1 (1949), 1–13 | DOI | MR | Zbl

[3] M. Kac, “On some connections between probability theory and differential and integral equations”, Proceedings of the second Berkeley symposium on mathematical statistics and probability, Univ. of California Press, Berkeley, 1951, 189–251 | MR | Zbl

[4] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev. Modern Phys., 20 (1948), 367–387 | DOI | MR

[5] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 ; Т. 2. Гармонический анализ. Самосопряженность, 1978 ; M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York–London, 1972 ; II. Fourier analysis, self-adjointness, 1975 | MR | MR | MR | Zbl | MR | Zbl

[6] I. M. Koval'chik, “The Wiener integral”, Russian Math. Surveys, 18:1 (1963), 97–134 | DOI | MR | Zbl

[7] B. Simon, Functional integration and quantum physics, Pure Appl. Math., 86, Academic Press, New York–London, 1979 | MR | Zbl

[8] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland, Amsterdam–Oxford–New York, 1981 | MR | Zbl | Zbl

[9] T. Hida, Brownian motion, Springer-Verlag, New York–Heidelberg–Berlin, 1980 | MR | MR | Zbl | Zbl

[10] A. N. Borodin, I. A. Ibragimov, Limit theorems for functionals of random walks, Proc. Steklov Inst. Math., Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl | Zbl

[11] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000

[12] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl

[13] M. Kats, Neskolko veroyatnostnykh zadach fiziki i matematiki, Nauka, M., 1967

[14] A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–41 ; A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl

[15] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29:4 (1976), 389–461 | DOI | MR | Zbl

[16] Sh. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl

[17] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals. I. Isolated minimum points”, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 ; “II: Manifold of minimum points”, Comm. Math. Phys., 82:2 (1981), 153–181 | DOI | MR | Zbl | DOI | MR | Zbl

[18] V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239 | DOI | MR | Zbl

[19] A. D. Venttsel, Predelnye teoremy o bolshikh ukloneniyakh dlya markovskikh sluchainykh protsessov, Nauka, M., 1986 | MR | Zbl

[20] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995 | MR | Zbl | Zbl

[21] V. R. Fatalov, “Bolshie ukloneniya gaussovskikh mer v prostranstvakh $l^p$ i $L^p$, $p\ge2$”, Teoriya veroyatn. i ee primen., 41:3 (1996), 682–689 ; “Исправления к статье”, 51:3 (2006), 634–636 ; V. R. Fatalov, “Large deviations of Gaussian measures in the spaces $l^p$ and $L^p$, $p\ge2$”, Theory Probab. Appl., 41:3 (1996), 548–555 ; “Letter to the editors”, 51:3 (2007), 561–563 | MR | Zbl | MR | DOI

[22] V. R. Fatalov, “Asymptotics of large deviations of Gaussian processes of Wiener type for $L^p$-functionals, $p>0$, and the hypergeometric function”, Sb. Math., 194:3 (2003), 369–390 | DOI | MR | Zbl

[23] V. R. Fatalov, “The Laplace method for small deviations of Gaussian processes of Wiener type”, Sb. Math., 196:4 (2005), 595–620 | DOI | MR | Zbl

[24] V. R. Fatalov, “Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields”, Russian Math. Surveys, 58:4 (2003), 725–772 | DOI | MR | Zbl

[25] W. V. Li, “Small ball probabilities for Gaussian Markov processes under the $L^p$-norm”, Stochastic Process. Appl., 92:1 (2001), 87–102 | DOI | MR | Zbl

[26] H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., 463, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | Zbl

[27] N. N. Vakhania, V. I. Tarieladze, S. A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, Reidel Publ., Dordrecht, 1987 | MR | MR | Zbl | Zbl

[28] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | MR | Zbl | Zbl

[29] S. O. Rice, “The integral of the absolute value of the pinned Wiener process – calculation of its probability density by numerical integration”, Ann. Probab., 10:1 (1982), 240–243 | DOI | MR | Zbl

[30] L. Tolmatz, “Asymptotics of the distribution of the integral of the absolute value of the Brownian bridge for large arguments”, Ann. Probab., 28:1 (2000), 132–139 | DOI | MR | Zbl

[31] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes. I, Springer-Verlag, New York–Heidelberg, 1974 | MR | MR | Zbl | Zbl

[32] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series. Vol. 1. Elementary functions, Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl

[33] M. A. Neumark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960 | MR | MR | Zbl

[34] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, Washington, 1964 | MR | MR | Zbl | Zbl

[35] L. Takács, “On the distribution of the integral of the absolute value of the Brownian motion”, Ann. Appl. Probab., 3:1 (1993), 186–197 | DOI | MR | Zbl

[36] N. V. Smirnov, “O raspredelenii $\omega^2$-kriteriya Mizesa”, Matem. sb., 2(44):5 (1937), 973–993 | Zbl

[37] V. R. Fatalov, “Large deviations of the $L^p$-norm of a Wiener process with drift”, Math. Notes, 65:3 (1999), 358–364 | DOI | MR | Zbl

[38] V. R. Fatalov, “Exact asymptotics of large deviations of stationary Ornstein–Uhlenbeck processes for $L^p$-functionals, $p>0$”, Probl. Inf. Transm., 42:1 (2006), 46–63 | DOI | MR | Zbl

[39] V. R. Fatalov, “Occupation time and exact asymptotics of distributions of $L^p$-functionals of the Ornstein–Uhlenbeck processes, $p>0$”, Probl. Inf. Transm., 53:1 (2009), 13–36 | DOI

[40] V. R. Fatalov, “An exact asymptotics for small deviations of a nonstationary Ornstein–Uhlenbeck process in the $L^p$-norm, $p\ge2$”, Moscow Univ. Math. Bull., 62:4 (2007), 125–130 | DOI | MR | Zbl

[41] V. R. Fatalov, “Occupation times and exact asymptotics of small deviations of Bessel processes for $L^p$-norms with $p>0$”, Izv. Math., 71:4 (2007), 721–752 | DOI | MR | Zbl

[42] V. R. Fatalov, “Exact asymptotics of distributions of integral functionals of the geometric Brownian motion and other related formulas”, Probl. Inf. Transm., 43:3 (2007), 233–254 | DOI | MR | Zbl

[43] V. R. Fatalov, “Integralnye funktsionaly dlya eksponenty ot vinerovskogo protsessa i brounovskogo mosta: tochnye asimptotiki i funktsii Lezhandra”, Matem. zametki (to appear)

[44] S. Albeverio, V. Fatalov, V. Piterbarg, “Asymptotic behavior of the sample mean of a function of the Wiener process and the MacDonald function”, J. Math. Sci. Univ. Tokyo, 16 (2009), 55–93

[45] M. M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, Halsted Press, New York–Toronto, 1973 | MR | MR | Zbl | Zbl

[46] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987 | MR | MR | Zbl | Zbl

[47] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[48] G. F. Votruba, L. F. Boron (eds.), Functional analysis, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl

[49] A. Pietsch, Operator ideals, Math. Monogr., 16, VEB, Berlin, 1978 | MR | MR | Zbl | Zbl

[50] R. Bonic, J. Frampton, “Smooth functions on Banach manifolds”, J. Math. Mech., 15:5 (1966), 877–898 | MR | Zbl

[51] M. A. Krasnosel'skij, P. P. Zabrejko, E. I. Pustylnik, P. E. Sobolevskij, Integral operators in spaces of summable functions, Noordhoff, Leyden, 1976 | MR | MR | Zbl | Zbl

[52] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl

[53] V. A. Sadovnichii, Theory of operators, Contemp. Soviet Math., Consultants Bureau, New York, 1991 | MR | MR | Zbl | Zbl

[54] V. R. Fatalov, “Tochnye asimptotiki tipa Laplasa dlya umerennykh uklonenii raspredelenii summ nezavisimykh banakhovoznachnykh sluchainykh elementov”, Teoriya veroyatn. i ee primen., 48:4 (2003), 720–744 ; “Исправления к статье”, 51:3 (2006), 634–636 ; V. R. Fatalov, “Precise Laplace-type asymptotics for moderate deviations of the distributions of sums of independent Banach-valued random elements”, Theory Probab. Appl., 48:4 (2004), 642–663 ; “Letter to the editors”, 51:3 (2007), 561–563 | MR | Zbl | MR | DOI | DOI

[55] M. Fukushima, M. Takeda, “A transformation of a symmetric Markov process and the Donsker–Varadhan theory”, Osaka J. Math., 21:2 (1984), 311–326 | MR | Zbl

[56] M. Fukushima, Dirichlet forms and Markov processes, North-Holland Math. Library, 23, North-Holland, Amsterdam–Oxford–New York, 1980 | MR | Zbl

[57] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter, 19, Springer-Verlag, Berlin, 1994 | MR | Zbl