The local finite basis property and local representability of varieties of associative rings
Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 1-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the local representability and local finite basis property of varieties of associative rings and algebras over an arbitrary associative-commutative Noetherian ring $\Phi$.
Keywords: $\mathrm{PI}$-algebra, representable algebra, universal algebra, polynomial identity, Hilbert series, Specht problem, non-commutative algebraic geometry, representation theory, quiver.
@article{IM2_2010_74_1_a0,
     author = {A. Ya. Belov},
     title = {The local finite basis property and local representability of varieties of associative rings},
     journal = {Izvestiya. Mathematics },
     pages = {1--126},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a0/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - The local finite basis property and local representability of varieties of associative rings
JO  - Izvestiya. Mathematics 
PY  - 2010
SP  - 1
EP  - 126
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a0/
LA  - en
ID  - IM2_2010_74_1_a0
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T The local finite basis property and local representability of varieties of associative rings
%J Izvestiya. Mathematics 
%D 2010
%P 1-126
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a0/
%G en
%F IM2_2010_74_1_a0
A. Ya. Belov. The local finite basis property and local representability of varieties of associative rings. Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 1-126. http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a0/