The local finite basis property and local representability of varieties of associative rings
Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 1-126
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the local representability and local finite basis property
of varieties of associative rings and algebras over an arbitrary
associative-commutative Noetherian ring $\Phi$.
Keywords:
$\mathrm{PI}$-algebra, representable algebra, universal algebra, polynomial identity, Hilbert series, Specht problem, non-commutative algebraic geometry, representation theory, quiver.
@article{IM2_2010_74_1_a0,
author = {A. Ya. Belov},
title = {The local finite basis property and local representability of varieties of associative rings},
journal = {Izvestiya. Mathematics },
pages = {1--126},
publisher = {mathdoc},
volume = {74},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a0/}
}
A. Ya. Belov. The local finite basis property and local representability of varieties of associative rings. Izvestiya. Mathematics , Tome 74 (2010) no. 1, pp. 1-126. http://geodesic.mathdoc.fr/item/IM2_2010_74_1_a0/