On tilings related to discrete reflection groups
Izvestiya. Mathematics, Tome 73 (2009) no. 6, pp. 1101-1109
Cet article a éte moissonné depuis la source Math-Net.Ru
We get simpler proofs of theorems of Waldspurger and Meinrenken on tilings formed by sets of the form $(1-w)C^\circ$, $w\in W$, where $W$ is a linear or affine Weyl group and $C^\circ$ is the open kernel of a fundamental chamber $C$ of $W$. We also generalize these results to cocompact hyperbolic reflection groups.
Keywords:
discrete reflection group, fundamental chamber, dual cone, Brouwer fixed-point theorem.
@article{IM2_2009_73_6_a1,
author = {P. V. Bibikov and V. S. Zhgoon},
title = {On tilings related to discrete reflection groups},
journal = {Izvestiya. Mathematics},
pages = {1101--1109},
year = {2009},
volume = {73},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a1/}
}
P. V. Bibikov; V. S. Zhgoon. On tilings related to discrete reflection groups. Izvestiya. Mathematics, Tome 73 (2009) no. 6, pp. 1101-1109. http://geodesic.mathdoc.fr/item/IM2_2009_73_6_a1/
[1] J.-L. Waldspurger, “Une remarque sur les systèmes de racines”, J. Lie Theory, 17:3 (2007), 597–603 | MR | Zbl
[2] E. Meinrenken, Tilings defined by affine Weyl groups, arXiv: 0811.3880v2
[3] S. Pasiencier, H.-Ch. Wang, “Commutators in a semi-simple Lie group”, Proc. Amer. Math. Soc., 13:6 (1962), 907–913 | DOI | MR | Zbl
[4] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968 | MR | MR | Zbl | Zbl
[5] P. V. Bibikov, V. S. Zhgun, “O teoreme Valdshpurgera”, UMN, 65:5 (2009), 177–178