The statistics of particle trajectories in the inhomogeneous Sinai problem for a~two-dimensional lattice
Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 669-688.

Voir la notice de l'article provenant de la source Math-Net.Ru

In connection with the two-dimensional model known as the ‘periodic Lorentz gas’, we study the asymptotic behaviour of statistical characteristics of a free path interval of a point particle before its first occurrence in an $h$-neighbourhood (a circle of radius $h$) of a non-zero integer point as $h\to 0$ given that the particle starts from the $h$-neighbourhood of the origin. We evaluate the limit distribution function of the free path length and of the input aimed parameter (the distance from the trajectory to the integer point we are interested in) for a given value of the output aimed parameter. This problem was studied earlier for a particle starting from the origin (the homogeneous case).
Keywords: analytic number theory, dynamical systems, continued fractions, Kloosterman sums, geometry of numbers.
Mots-clés : billiards
@article{IM2_2009_73_4_a1,
     author = {V. A. Bykovskii and A. V. Ustinov},
     title = {The statistics of particle trajectories in the inhomogeneous {Sinai} problem for a~two-dimensional lattice},
     journal = {Izvestiya. Mathematics },
     pages = {669--688},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a1/}
}
TY  - JOUR
AU  - V. A. Bykovskii
AU  - A. V. Ustinov
TI  - The statistics of particle trajectories in the inhomogeneous Sinai problem for a~two-dimensional lattice
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 669
EP  - 688
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a1/
LA  - en
ID  - IM2_2009_73_4_a1
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%A A. V. Ustinov
%T The statistics of particle trajectories in the inhomogeneous Sinai problem for a~two-dimensional lattice
%J Izvestiya. Mathematics 
%D 2009
%P 669-688
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a1/
%G en
%F IM2_2009_73_4_a1
V. A. Bykovskii; A. V. Ustinov. The statistics of particle trajectories in the inhomogeneous Sinai problem for a~two-dimensional lattice. Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 669-688. http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a1/

[1] Ya. G. Sinaj, “Ergodic properties of the Lorentz gas”, Funct. Anal. Appl., 13:3 (1979), 192–202 | DOI | MR | Zbl | Zbl

[2] V. A. Bykovskiǐ, A. V. Ustinov, “The statistics of particle trajectories in the homogeneous Sinai problem for a two-dimensional lattice”, Funct. Anal. Appl., 42:3 (2008), 169–179 | DOI | MR | Zbl

[3] F. P. Boca, R. N. Gologan, A. Zaharescu, “The statistics of the trajectory of a certain billiard in a flat two-torus”, Comm. Math. Phys., 240:1–2 (2003), 53–73 | DOI | MR | Zbl

[4] J. Marklof, A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, arXiv: abs/0706.4395v1

[5] A. G. Kadmenskii, V. V. Samarin, A. F. Tulinov, “Regulyarnoe i stokhasticheskoe dvizhenie v kristalle pri kanalirovanii. Evolyutsiya potoka chastits v tolstom kristalle”, Fizika elementarnykh chastits i atomnogo yadra, 34:4 (2003), 822–868

[6] M. A. Kumakhov, G. Shirmer, Atomnye stolknoveniya v kristallakh, Atomizdat, M., 1980

[7] M. O. Avdeeva, “On the statistics of partial quotients of finite continued fractions”, Funct. Anal. Appl., 38:2 (2004), 79–87 | DOI | MR | Zbl

[8] T. Estermann, “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86 | MR | Zbl