Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_3_a2, author = {M. V. Balashov and G. E. Ivanov}, title = {Weakly convex and proximally smooth sets in {Banach} spaces}, journal = {Izvestiya. Mathematics }, pages = {455--499}, publisher = {mathdoc}, volume = {73}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a2/} }
M. V. Balashov; G. E. Ivanov. Weakly convex and proximally smooth sets in Banach spaces. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 455-499. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a2/
[1] N. V. Efimov, S. B. Stechkin, “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, Dokl. AN SSSR, 127:2 (1959), 254–257 | MR | Zbl
[2] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl
[3] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and lower-$C^2$ propoerty”, J. Convex Anal., 2:1–2 (1995), 117–144 | MR | Zbl
[4] R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249 | DOI | MR | Zbl
[5] F. Bernard, L. Thibault, N. Zlateva, “Characterizations of prox-regular sets in uniformly convex Banach spaces”, J. Convex Anal., 13:3–4 (2006), 525–559 | MR | Zbl
[6] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006 | Zbl
[7] E. S. Polovinkin, “O novykh klassakh porozhdayuschikh mnozhestv. Nekotorye problemy fundamentalnoi i prikladnoi matematiki”, Mezhduved. sb., MFTI, M., 1998, 81–93
[8] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004 | Zbl
[9] M. V. Balashov, E. S. Polovinkin, “$M$-strongly convex subsets and their generating sets”, Sb. Math., 191:1 (2000), 25–60 | DOI | MR | Zbl
[10] G. E. Ivanov, “A criterion of smooth generating sets”, Sb. Math., 198:3 (2007), 343–368 | DOI | MR | Zbl
[11] R. N. Karasev, “Ob analoge teoremy Karateodori dlya $M$-silno vypuklykh mnozhestv”, Modelirovanie i analiz informatsionnykh sistem, 8, no. 2, Izd-vo YarGU, Yaroslavl, 2001, 17–22
[12] J. Diestel, Geometry of Banach spaces. Selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | DOI | MR | MR | Zbl | Zbl
[13] V. S. Balaganskii, L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Russian Math. Surveys, 51:6 (1996), 1127–1190 | DOI | MR | Zbl
[14] N. V. Efimov, S. B. Stechkin, “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | MR | Zbl
[15] M. I. Karlov, “Chebyshev layer of manifolds in a Hilbert space”, Proc. Steklov Inst. Math., 219 (1997), 231–244 | MR | Zbl
[16] M. I. Karlov, I. G. Tsarkov, “Vypuklost i svyaznost chebyshevskikh mnozhestv i solnts”, Fundament. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl
[17] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II. Function spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl
[18] S. B. Stechkin, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Izbrannye trudy. Matematika, Nauka, M., 1998, 270–281 | MR | Zbl
[19] L. S. Pontrjagin, “Linear differential games of pursuit”, Math. USSR-Sb., 40:3 (1981), 285–303 | DOI | MR | Zbl | Zbl
[20] W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl
[21] L. Schwartz, Analyse mathématique. I, Hermann, Paris, 1967 | MR | Zbl | Zbl