Weakly convex and proximally smooth sets in Banach spaces
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 455-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish interconnections between the conditions of weak convexity in the sense of Vial, weak convexity in the sense of Efimov–Stechkin, and proximal smoothness of sets in Banach spaces. We prove a theorem on the separation by a sphere of two disjoint sets, one of which is weakly convex in the sense of Vial and the other is strongly convex. We also prove that weakly convex and proximally smooth sets are locally connected, and study questions related to the preservation of the conditions of weak convexity and proximal smoothness under passage to the limit.
Keywords: proximal smoothness, weak convexity, uniform convexity, uniform smoothness, generating set, separation by a sphere, supporting ball.
@article{IM2_2009_73_3_a2,
     author = {M. V. Balashov and G. E. Ivanov},
     title = {Weakly convex and proximally smooth sets in {Banach} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {455--499},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a2/}
}
TY  - JOUR
AU  - M. V. Balashov
AU  - G. E. Ivanov
TI  - Weakly convex and proximally smooth sets in Banach spaces
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 455
EP  - 499
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a2/
LA  - en
ID  - IM2_2009_73_3_a2
ER  - 
%0 Journal Article
%A M. V. Balashov
%A G. E. Ivanov
%T Weakly convex and proximally smooth sets in Banach spaces
%J Izvestiya. Mathematics 
%D 2009
%P 455-499
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a2/
%G en
%F IM2_2009_73_3_a2
M. V. Balashov; G. E. Ivanov. Weakly convex and proximally smooth sets in Banach spaces. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 455-499. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a2/

[1] N. V. Efimov, S. B. Stechkin, “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, Dokl. AN SSSR, 127:2 (1959), 254–257 | MR | Zbl

[2] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl

[3] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and lower-$C^2$ propoerty”, J. Convex Anal., 2:1–2 (1995), 117–144 | MR | Zbl

[4] R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249 | DOI | MR | Zbl

[5] F. Bernard, L. Thibault, N. Zlateva, “Characterizations of prox-regular sets in uniformly convex Banach spaces”, J. Convex Anal., 13:3–4 (2006), 525–559 | MR | Zbl

[6] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006 | Zbl

[7] E. S. Polovinkin, “O novykh klassakh porozhdayuschikh mnozhestv. Nekotorye problemy fundamentalnoi i prikladnoi matematiki”, Mezhduved. sb., MFTI, M., 1998, 81–93

[8] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004 | Zbl

[9] M. V. Balashov, E. S. Polovinkin, “$M$-strongly convex subsets and their generating sets”, Sb. Math., 191:1 (2000), 25–60 | DOI | MR | Zbl

[10] G. E. Ivanov, “A criterion of smooth generating sets”, Sb. Math., 198:3 (2007), 343–368 | DOI | MR | Zbl

[11] R. N. Karasev, “Ob analoge teoremy Karateodori dlya $M$-silno vypuklykh mnozhestv”, Modelirovanie i analiz informatsionnykh sistem, 8, no. 2, Izd-vo YarGU, Yaroslavl, 2001, 17–22

[12] J. Diestel, Geometry of Banach spaces. Selected topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | DOI | MR | MR | Zbl | Zbl

[13] V. S. Balaganskii, L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Russian Math. Surveys, 51:6 (1996), 1127–1190 | DOI | MR | Zbl

[14] N. V. Efimov, S. B. Stechkin, “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | MR | Zbl

[15] M. I. Karlov, “Chebyshev layer of manifolds in a Hilbert space”, Proc. Steklov Inst. Math., 219 (1997), 231–244 | MR | Zbl

[16] M. I. Karlov, I. G. Tsarkov, “Vypuklost i svyaznost chebyshevskikh mnozhestv i solnts”, Fundament. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl

[17] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II. Function spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[18] S. B. Stechkin, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Izbrannye trudy. Matematika, Nauka, M., 1998, 270–281 | MR | Zbl

[19] L. S. Pontrjagin, “Linear differential games of pursuit”, Math. USSR-Sb., 40:3 (1981), 285–303 | DOI | MR | Zbl | Zbl

[20] W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl

[21] L. Schwartz, Analyse mathématique. I, Hermann, Paris, 1967 | MR | Zbl | Zbl