The fundamental solution of a~diffusion-wave equation of fractional order
Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 351-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a fundamental solution of a diffusion-wave equation with Dzhrbashyan–Nersesyan fractional differentiation operator with respect to the time variable. We prove reduction formulae and solve the problem of sign-determinacy for the fundamental solution. A general representation for solutions is constructed. We give a solution of the Cauchy problem and prove the uniqueness theorem in the class of functions satisfying an analogue of Tychonoff's condition. It is shown that our fundamental solution yields the corresponding solutions for the diffusion and wave equations when the order of the fractional derivative is equal to 1 or tends to 2. The corresponding results for equations with Riemann–Liouville and Caputo derivatives are obtained as particular cases of our assertions.
Keywords: fundamental solution, wave equation of fractional order, Dzhrbashyan–Nersesyan fractional differentiation operator, Riemann–Liouville derivative, Caputo derivative, Tychonoff's condition, Wright's function, Cauchy problem.
Mots-clés : diffusion equation of fractional order, diffusion-wave equation
@article{IM2_2009_73_2_a5,
     author = {A. V. Pskhu},
     title = {The fundamental solution of a~diffusion-wave equation of fractional order},
     journal = {Izvestiya. Mathematics },
     pages = {351--392},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a5/}
}
TY  - JOUR
AU  - A. V. Pskhu
TI  - The fundamental solution of a~diffusion-wave equation of fractional order
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 351
EP  - 392
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a5/
LA  - en
ID  - IM2_2009_73_2_a5
ER  - 
%0 Journal Article
%A A. V. Pskhu
%T The fundamental solution of a~diffusion-wave equation of fractional order
%J Izvestiya. Mathematics 
%D 2009
%P 351-392
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a5/
%G en
%F IM2_2009_73_2_a5
A. V. Pskhu. The fundamental solution of a~diffusion-wave equation of fractional order. Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 351-392. http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a5/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[2] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadachi Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN ArmSSR. Matem., 3:1 (1968), 3–28 | MR | Zbl

[3] A. N. Kochubei, “Diffusion of fractional order”, Differential Equations, 26:4 (1990), 485–492 | MR | Zbl

[4] A. N. Kochubeǐ, S. D. Èǐdelman, “The Cauchy problem for evolution equations of fractional order”, Dokl. Math., 69:1 (2004), 38–40 | MR | Zbl

[5] S. D. Eidelman, A. N. Kochubei, “Cauchy problem for fractional diffusion equations”, J. Differential Equations, 199:2 (2004), 211–255 | DOI | MR | Zbl

[6] W. Wyss, “The fractional diffusion equation”, J. Math. Phys., 27:11 (1986), 2782–2785 | DOI | MR | Zbl

[7] W. R. Schneider, W. Wyss, “Fractional diffusion and wave equations”, J. Math. Phys., 30:1 (1989), 134–144 | DOI | MR | Zbl

[8] Ya. Fujita, “Integrodifferential equation which interpolates the heat equation and the wave equation”, Osaka J. Math., 27:2 (1990), 309–321 | MR | Zbl

[9] F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena”, Chaos Solitons Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl

[10] F. Mainardi, “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl

[11] S. Kh. Gekkieva, “Zadacha Koshi dlya obobschennogo uravneniya perenosa s drobnoi po vremeni proizvodnoi”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi AN, 5:1 (2000), 16–19

[12] S. Kh. Gekkieva, “Kraevaya zadacha dlya obobschennogo uravneniya perenosa v polubeskonechnoi oblasti”, Izv. Kabardino-Balkarskogo NTs RAN, 1:8 (2002), 6–8

[13] A. A. Voroshilov, A. A. Kilbas, “A Cauchy-type problem for the diffusion-wave equation with Riemann–Liouville partial derivative”, Dokl. Math., 73:1 (2006), 6–10 | DOI | MR

[14] A. A. Voroshilov, A. A. Kilbas, “The Cauchy problem for the diffusion-wave equation with the Caputo partial derivative”, Differ. Equ., 42:5 (2006), 638–649 | DOI | MR | Zbl

[15] H. Engler, “Similiraty solutions for a class of hyperbolic integrodifferential equations”, Differential Integral Equations, 10:5 (1997), 815–840 | MR | Zbl

[16] E. Buckwar, Yu. Luchko, “Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations”, J. Math. Anal. Appl., 227:1 (1998), 81–97 | DOI | MR | Zbl

[17] Yu. Luchko, R. Gorenflo, “Scale-invariant solutions of a partial differential equation of fractional order”, Fract. Calc. Appl. Anal., 1:1 (1998), 63–78 | MR | Zbl

[18] R. Gorenflo, Yu. Luchko, F. Mainardi, “Analytical properties and applications of the Wright function”, Fract. Calc. Appl. Anal., 2:4 (1999), 383–414 | MR | Zbl

[19] R. Gorenflo, Yu. Luchko, F. Mainardi, “Wright functions as scale-invariant solutions of the diffusion-wave equation”, J. Comput. Appl. Math., 118:1–2 (2000), 175–191 | DOI | MR | Zbl

[20] S. Kh. Gekkieva, “Kraevaya zadacha dlya obobschennogo uravneniya perenosa s drobnoi proizvodnoi po vremeni”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi AN, 1:1 (1994), 17–18

[21] V. Kh. Shogenov, S. K. Kumykova, M. Kh. Shkhanukov-Lafishev, “Obobschennoe uravnenie perenosa i drobnye proizvodnye”, Dokl. NAN Ukrainy, 1997, no. 12, 47–54 | MR | Zbl

[22] M. A. Kerefov, “Reshenie odnoi kraevoi zadachi dlya volnovogo uravneniya drobnogo poryadka”, Nelineinye problemy differentsialnykh uravnenii i metematicheskoi fiziki, Sb. nauchnykh trudov instituta matematiki NAN Ukrainy, Kiev, 1997, 144–145

[23] V. A. Nakhusheva, Nekotorye klassy differentsialnykh uravnenii matematicheskikh modelei nelokalnykh fizicheskikh protsessov, Izd-vo KBNTs RAN, Nalchik, 2002

[24] O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain”, Nonlinear Dynam., 29:1–4 (2002), 145–155 | DOI | MR | Zbl

[25] A. A. Andreev, A. S. Eremin, “Kraevaya zadacha dlya uravneniya diffuzii s drobnoi proizvodnoi po vremeni”, Matematicheskoe modelirovanie i kraevye zadachi, Tr. dvenadtsatoi mezhvuz. konf. Ch. 3, SamGTU, Samara, 2004, 3–9

[26] Z. A. Nakhusheva, “Vidoizmenennaya zadacha Samarskogo dlya nelokalnogo diffuzionnogo uravneniya”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi AN, 2:2 (1997), 36–41

[27] A. V. Pskhu, “Solution of the first boundary value problem for a fractional-order diffusion equation”, Differ. Equ, 39:9 (2003), 1359–1363 | DOI | MR | Zbl

[28] A. V. Pskhu, “Solution of boundary value problems for the fractional diffusion equation by the Green function method”, Differ. Equ., 39:10 (2003), 1509–1513 | DOI | MR | Zbl

[29] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[30] E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | Zbl

[31] E. M. Wright, “The generalized Bessel function of order greater than one”, Quart. J. Math., Oxford Ser., 11:1 (1940), 36–48 | DOI | MR | Zbl

[32] M. M. Dzhrbashyan, R. A. Bagiyan, “On integral representations and measures associated with functions of Mittag–Leffler type”, Soviet Math. Dokl., 16:4 (1975), 1072–1076 | MR | Zbl

[33] A. V. Pskhu, “Integralnoe preobrazovanie s funktsiei Raita v yadre”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi AN, 6:1 (2002), 35–47

[34] B. Stanković, “On the function of E. M. Wright”, Publ. Inst. Math. (Beograd) (N.S.), 10:24 (1970), 113–124 | MR | Zbl

[35] L. Gajić, B. Stanković, “Some properties of Wright's function”, Publ. Inst. Math. (Beograd) (N.S.), 20:34 (1976), 91–98 | MR | Zbl

[36] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, VEB, Berlin, 1967 | MR | MR | Zbl

[37] B. L. J. Braaksma, “Asymptotic expansion and analytic continuations for a class of Barnes-integrals”, Compositio Math., 15 (1964), 239–341 | MR

[38] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series. Vol. 3. More special functions, Gordon and Breach, New York, 1990 | MR | MR | Zbl | Zbl

[39] R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Intersci. Publ., New York–London, 1962 | MR | MR | Zbl | Zbl