Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations
Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 215-278.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study linear differential operators with unbounded operator-valued coefficients acting on homogeneous spaces of functions on the semi-axis. We obtain necessary and sufficient conditions for such operators to be invertible or Fredholm. Essential use is made of the spectral theory of difference relations and semigroups of linear relations (multi-valued linear operators).
Keywords: linear differential operators, spectrum of an operator, homogeneous spaces of functions, Green function, Fredholm operator.
@article{IM2_2009_73_2_a0,
     author = {A. G. Baskakov},
     title = {Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations},
     journal = {Izvestiya. Mathematics },
     pages = {215--278},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
TI  - Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 215
EP  - 278
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a0/
LA  - en
ID  - IM2_2009_73_2_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%T Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations
%J Izvestiya. Mathematics 
%D 2009
%P 215-278
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a0/
%G en
%F IM2_2009_73_2_a0
A. G. Baskakov. Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations. Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 215-278. http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a0/

[1] O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen”, Math. Z., 32:3 (1930), 465–473 | DOI | MR | Zbl

[2] J. L. Massera, J. J. Schäffer, Linear differential equations and function spaces, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl

[3] Ju. L. Dalec'kiǐ, M. G. Kreǐn,, Stability of solutions of differential equations in Banach space, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl | Zbl

[4] V. V. Žikov, “Some admissibility and dichotomy questions. The averaging principle”, Math. USSR-Izv., 10:6 (1976), 1307–1332 | DOI | MR | Zbl | Zbl

[5] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981 | MR | MR | Zbl | Zbl

[6] J. S. Howland, “Stationary scattering theory for time-dependent Hamiltonians”, Math. Ann., 207:4 (1974), 315–335 | DOI | MR | Zbl

[7] R. T. Rau, “Hyperbolic evolution semigroups on vector valued function spaces”, Semigroup Forum, 48:1 (1994), 107–118 | DOI | MR | Zbl

[8] Yu. Latushkin, S. Montgomery-Smith, “Evolutionary semigroups and Lyapunov theorems in Banach spaces”, J. Funct. Anal., 127:1 (1995), 173–197 | DOI | MR | Zbl

[9] Yu. Latushkin, T. Randolph, R. Schnaubelt, “Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces”, J. Dynam. Differential Equations, 10:3 (1998), 489–510 | DOI | MR | Zbl

[10] R. Nagel, “Semigroup methods for nonautonomous Cauchy problems”, Evolution equations (Baton Rouge, LA, 1992), Lecture Notes in Pure and Appl. Math., 168, Dekker, New York, 1995, 301–316 | MR | Zbl

[11] V. M. Tyurin, “Invertibility of linear differential operators in certain functional spaces”, Siberian Math. J., 32:3 (1991), 485–490 | DOI | MR | Zbl

[12] F. Räbiger, R. Schnaubelt, “The spectral mapping theorem for evolution semigroups on spaces of vector-valued functions”, Semigroup Forum, 52:1 (1996), 225–239 | DOI | MR | Zbl

[13] Yu. D. Latushkin, A. M. Stëpin, “Weighted translation operators and linear extensions of dynamical systems”, Russian Math. Surveys, 46:2 (1991), 95–165 | DOI | MR | Zbl

[14] N. Van Minh, F. Räbiger, R. Schnaubelt, “Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line”, Integral Equations Operator Theory, 32:3 (1998), 332–353 | DOI | MR | Zbl

[15] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[16] A. G. Baskakov, “Spectral analysis of linear differential operators and semigroups of difference operators”, Russian Acad. Sci. Dokl. Math., 52:1 (1995), 30–32 | MR | Zbl

[17] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | MR | Zbl

[18] A. G. Baskakov, “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:6 (1996), 586–593 ; II, 37:1 (2001), 3–11 | DOI | MR | Zbl | MR | Zbl

[19] A. G. Baskakov, “Spectral analysis of linear differential operators, and semigroups of difference operators. I”, Differential Equations, 33:10 (1997), 1305–1312 ; II, 37:1 (2001), 1–10 | DOI | MR | MR | Zbl | Zbl

[20] A. G. Baskakov, “On correct linear differential operators”, Sb. Math., 190:3 (1999), 323–348 | DOI | MR | Zbl

[21] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR | MR | Zbl

[22] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of linear operators, vol. I, Oper. Theory Adv. Appl., 49, Birkhäser, Basel, 1990 | MR | Zbl

[23] N. Van Minh, N. Th. Huy, “Characterizations of dichotomies of evolution equations on the half-line”, J. Math. Anal. Appl., 261:1 (2001), 28–44 | DOI | MR | Zbl

[24] Yu. Latushkin, Yu. Tomilov, “Fredholm properties of evolution semigroups”, Illinois J. Math., 48:3 (2004), 999–1020 | MR | Zbl

[25] G. F. Votruba, L. F. Boron (eds.), Functional analysis, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl

[26] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1035 | DOI | MR | Zbl

[27] A. G. Baskakov, I. A. Krishtal, “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | MR | Zbl

[28] A. G. Baskakov, “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N. Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl

[29] A. G. Baskakov, K. I. Chernyshov, “Spectral analysis of linear relations and degenerate operator semigroups”, Sb. Math., 193:11 (2002), 1573–1610 | DOI | MR | Zbl

[30] R. Cross, Multivalued linear operators, Monogr. Textbooks Pure Appl. Math., 213, Dekker, New York, 1998 | MR | Zbl

[31] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, Dekker, New York, 1998 | MR | Zbl

[32] S. S. Kutateladze, Fundamentals of functional analysis, Kluwer Texts Math. Sci., 12, Kluwer Acad. Publ., Dordrecht, 1996 | MR | MR | Zbl | Zbl

[33] M. Megan, A. L. Sasu, B. Sasu, “Discrete admissibility and exponential dichotomy for evolution families”, Discrete Contin. Dyn. Syst., 9:2 (2003), 383–397 | MR | Zbl

[34] Yu. Latushkin, Yu. Tomilov, “Fredholm differential operators with unbounded coefficients”, J. Differential Equations, 208:2 (2005), 388–429 | DOI | MR | Zbl

[35] A. E. Taylor, Introduction to functional analysis, Wiley, New York; Chapman and Hall, London, 1958 | MR | Zbl

[36] S. Goldberg, Unbounded linear operators. Theory and applications, McGraw-Hill, New York–Toronto, ON–London, 1966 | MR | Zbl

[37] W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl

[38] A. P. Robertson, W. Robertson, Topological vector spaces, Cambridge Univ. Press, Cambridge, 1964 | MR | MR | Zbl | Zbl

[39] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[40] S. Prössdorf, Einige Klassen singularer Gleichungen, Birkhäuser, Basel-Stuttgart, 1974 | MR | MR | Zbl | Zbl

[41] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[42] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965 | MR | Zbl | Zbl

[43] A. Abbondandolo, Morse theory for Hamiltonian systems, Chapman Hall/CRC Res. Notes Math., 425, Chapman Hall, Boca Raton, FL, 2001 | MR | Zbl

[44] B. Sandstede, “Stability of travelling waves”, Handbook of dynamical systems, vol. 2, North-Holland, Elsevier, Amsterdam, 2002, 983–1055 | MR | Zbl

[45] A. G. Baskakov, “Invertibility and the Fredholm property of difference operators”, Math. Notes, 67:6 (2000), 690–698 | DOI | MR | Zbl

[46] A. G. Baskakov, “On invertibility and the Fredholm property of parabolic differential operators”, Russian Acad. Sci. Dokl. Math., 65:2 (2002), 245–247 | MR | Zbl