Asymptotics for the probability of not exceeding a curvilinear level by a Gaussian random walk
Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 47-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We get a correction term in the asymptotics for the probability of not exceeding a curvilinear level by a trajectory of a Gaussian random walk. We also estimate the density of distribution of the maxima of some Gaussian processes.
Keywords: boundary value problem, random walk.
@article{IM2_2009_73_1_a4,
     author = {N. K. Bakirov},
     title = {Asymptotics for the probability of not exceeding a curvilinear level by a {Gaussian} random walk},
     journal = {Izvestiya. Mathematics },
     pages = {47--77},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a4/}
}
TY  - JOUR
AU  - N. K. Bakirov
TI  - Asymptotics for the probability of not exceeding a curvilinear level by a Gaussian random walk
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 47
EP  - 77
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a4/
LA  - en
ID  - IM2_2009_73_1_a4
ER  - 
%0 Journal Article
%A N. K. Bakirov
%T Asymptotics for the probability of not exceeding a curvilinear level by a Gaussian random walk
%J Izvestiya. Mathematics 
%D 2009
%P 47-77
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a4/
%G en
%F IM2_2009_73_1_a4
N. K. Bakirov. Asymptotics for the probability of not exceeding a curvilinear level by a Gaussian random walk. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 47-77. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a4/

[1] S. V. Nagaev, “On the speed of convergence in a boundary problem. I”, Theory Probab. Appl., 15 (1971), 163–186 | DOI | MR | Zbl | Zbl

[2] A. I. Sahanenko, “The rate of convergence in a boundary problem”, Theory Probab. Appl., 19 (1975), 399–403 | DOI | MR | Zbl

[3] K. A. Borovkov, “Rate of convergence in a boundary problem”, Theory Probab. Appl., 27 (1982), 148–149 | DOI | MR | Zbl | Zbl

[4] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | MR | Zbl

[5] A. A. Borovkov, Stochastic processes in queueing theory, Appl. Math., 4, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | MR | Zbl | Zbl

[6] V. A. Dmitrovskii, “Otsenki raspredeleniya maksimuma gaussovskogo polya”, Sluchainye protsessy i polya, Izd-vo Mosk. un-ta, M., 1979, 22–31

[7] M. A. Lifshits, “Distribution of the maximum of a Gaussian process”, Theory Probab. Appl., 31:1 (1986), 125–132 | DOI | MR | Zbl | Zbl

[8] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl | Zbl

[9] A. B. Vasileva, N. A. Tikhonov, Integralnye uravneniya, Izd-vo Mosk. un-ta, M., 1989 | Zbl

[10] P. E. Baskakova, A. N. Borodin, “Tables of distributions of functionals of Brownian motion”, J. Math. Sci., 75:5 (1995), 1873–1883 | DOI | MR | Zbl

[11] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh slagaemykh s eksponentsialnymi momentami”, Predelnye teoremy dlya summ sluchainykh velichin, Tr. In-ta matem., 3, Nauka, Novosibirsk, 1984, 4–49 | MR | Zbl