On Chisini's conjecture. II
Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 901-913.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $S\subset\mathbb P^N$ is a smooth projective surface and $f\colon S\to\mathbb P^2$ is a generic linear projection branched over a cuspidal curve $B\subset\mathbb P^2$, then $S$ is uniquely determined (up to isomorphism) by $B$.
@article{IM2_2008_72_5_a1,
     author = {Vik. S. Kulikov},
     title = {On {Chisini's} conjecture. {II}},
     journal = {Izvestiya. Mathematics },
     pages = {901--913},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a1/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On Chisini's conjecture. II
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 901
EP  - 913
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a1/
LA  - en
ID  - IM2_2008_72_5_a1
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On Chisini's conjecture. II
%J Izvestiya. Mathematics 
%D 2008
%P 901-913
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a1/
%G en
%F IM2_2008_72_5_a1
Vik. S. Kulikov. On Chisini's conjecture. II. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 901-913. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a1/

[1] O. Chisini, “Sulla identita birazionale delle funzioni algebriche di due variabili dotate di una medesima curva di diramazione”, Istit. Lombardo Accad. Sci. Lett. Rend. A, 8(77) (1944), 339–356 | MR | Zbl

[2] Vik. S. Kulikov, “On Chisini's conjecture”, Izv. Math., 63:6 (1999), 1139–1170 | DOI | MR | Zbl

[3] S. Yu. Nemirovski, “Kulikov's theorem on the Chisini conjecture”, Izv. Math., 65:1 (2001), 71–74 | DOI | MR | Zbl

[4] B. Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Math., 603, Springer-Verlag, Berlin–New York, 1977 | DOI | MR | Zbl

[5] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley, New York, 1978 | MR | Zbl | Zbl

[6] F. Catanese, “On a problem of Chisini”, Duke Math. J., 53:1 (1986), 33–42 | DOI | MR | Zbl