On algebraic cycles on complex Abelian schemes over smooth projective curves
Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 817-844

Voir la notice de l'article provenant de la source Math-Net.Ru

If the Hodge conjecture holds for some generic (in the sense of Weil) geometric fibre $X_s$ of an Abelian scheme $\pi\colon X\to C$ over a smooth projective curve $C$, then numerical equivalence of algebraic cycles on $X$ coincides with homological equivalence. The Hodge conjecture for all complex Abelian varieties is equivalent to the standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the Hodge operator $\ast$ for all Abelian schemes $\pi\colon X\to C$ over smooth projective curves. We investigate some properties of the Gauss–Manin connection and Hodge bundles associated with Abelian schemes over smooth projective curves, with applications to the conjectures of Hodge and Tate.
@article{IM2_2008_72_4_a8,
     author = {S. G. Tankeev},
     title = {On algebraic cycles on complex {Abelian} schemes over smooth projective curves},
     journal = {Izvestiya. Mathematics },
     pages = {817--844},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a8/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On algebraic cycles on complex Abelian schemes over smooth projective curves
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 817
EP  - 844
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a8/
LA  - en
ID  - IM2_2008_72_4_a8
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On algebraic cycles on complex Abelian schemes over smooth projective curves
%J Izvestiya. Mathematics 
%D 2008
%P 817-844
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a8/
%G en
%F IM2_2008_72_4_a8
S. G. Tankeev. On algebraic cycles on complex Abelian schemes over smooth projective curves. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 817-844. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a8/