Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_4_a8, author = {S. G. Tankeev}, title = {On algebraic cycles on complex {Abelian} schemes over smooth projective curves}, journal = {Izvestiya. Mathematics }, pages = {817--844}, publisher = {mathdoc}, volume = {72}, number = {4}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a8/} }
S. G. Tankeev. On algebraic cycles on complex Abelian schemes over smooth projective curves. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 817-844. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a8/
[1] W. V. D. Hodge, “The topological invariants of algebraic varieties”, Proc. Int. Congr. Math. (Cambridge, MA, 1950), 1, Amer. Math. Soc., Providence, RI, 1952, 182–192 | MR | Zbl
[2] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloquium Publ., 29, Amer. Math. Soc., New York, 1946 | MR | Zbl
[3] S. Abdulali, “Algebraic cycles in families of abelian varieties”, Canad. J. Math., 46:6 (1994), 1121–1134 | MR | Zbl
[4] Y. André, “Pour une théorie inconditionnelle des motifs”, Publ. Math. Inst. Hautes Études Sci., 83 (1996), 5–49 | DOI | MR | Zbl
[5] L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque, 129, Société Mathématique de France, Paris, 1985 | MR | Zbl
[6] J. T. Tate, “Algebraic cycles and poles of zeta functions”, Proc. Conf. Purdue Univ. (Lafayette, IN, 1963), Arithmetical Algebraic Geometry, Harper, New York, 1965, 93–110 | MR | Zbl
[7] B. B. Gordon, “A survey of the Hodge conjecture for abelian varieties”, Appendix in: J. D. Lewis, A survey of the Hodge conjecture, Second edition, CRM Monograph Series, 10, Amer. Math. Soc., Providence, RI, 1999, 297–356 | MR | Zbl
[8] Shiing-shen Chern, Complex manifolds, Textos de Matemática, 5, Instituto de Física e Matemática, Recife, 1959 | MR | Zbl | Zbl
[9] P. Deligne, “Théorème de Lefschetz et critères de dégénérescence des suites spectrales”, Publ. Math. Inst. Hautes Études Sci., 35 (1968), 259–278 | MR | Zbl
[10] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley, New York, 1978 | MR | MR | Zbl | Zbl
[11] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386 | MR | Zbl
[12] P. Deligne, “Théorie de Hodge. II”, Publ. Math. Inst. Hautes Études Sci., 40 (1971), 5–57 | DOI | MR | Zbl | Zbl
[13] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, New York–Heidelberg, 1977 | MR | MR | Zbl | Zbl
[14] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl
[15] S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. Math., 69:1 (2005), 143–162 | DOI | MR | Zbl
[16] S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI | MR | Zbl
[17] S. G. Tankeev, “Cycles on simple abelian varieties of prime dimension”, Math. USSR-Izv., 20:1 (1983), 157–171 | DOI | MR | Zbl
[18] P. A. Griffiths, “Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems”, Bull. Amer. Math. Soc., 76:2 (1970), 228–296 | DOI | MR | Zbl | Zbl
[19] Ph. A. Griffiths, “Periods of integrals on algebraic manifolds. I: Construction and properties of the modular varieties”, Amer. J. Math., 90 (1968), 568–626 | DOI | MR | Zbl
[20] C. Voisin, “Variations of Hodge structure and algebraic cycles”, Proc. Intern. Congr. Math., vol. 1 (Zürich, 1994), Birkhäuser, Basel, 1995, 706–715 | MR | Zbl
[21] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, London, 1970 | MR | Zbl | Zbl
[22] P. Delin, “Modulyarnye formy i $l$-adicheskie predstavleniya”, V kn.: Serr Zh.-P., Abelevy $l$-adicheskie predstavleniya i ellipticheskie krivye, Mir, M., 1973, 154–186
[23] Yu. I. Manin, “Lectures on the $K$-functor in algebraic geometry”, Russian Math. Surveys, 24:5 (1969), 1–89 | DOI | MR | Zbl | Zbl
[24] J. D. Lewis, A survey of the Hodge conjecture, Second edition, CRM Monograph Series, 10, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[25] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | Zbl | Zbl
[26] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 2, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl
[27] R. O. Jr. Wells, Differential analysis on complex manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1973 | MR | MR | Zbl
[28] Ph. Griffiths, “Hodge theory and geometry”, Bull. London Math. Soc., 36:6 (2004), 721–757 | DOI | MR | Zbl
[29] Yu. G. Zarhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl
[30] P. Deligne, “La conjecture de Weil pour les surfaces $K3$”, Invent. Math., 15:3 (1971), 206–226 | DOI | MR | Zbl
[31] S. G. Tankeev, “On algebraic cycles on surfaces and abelian varieties”, Math. USSR-Izv., 18:2 (1982), 349–380 | DOI | MR | Zbl
[32] S. Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983 | MR | MR | Zbl | Zbl
[33] J.-P. Serre, Représentations linéaires des groupes finis. I: Représentations et caractères. II: Complements. III: Introduction à la théorie de Brauer, Collection Methodes, Hermann, Paris, 1967 | MR | Zbl | Zbl
[34] J.-P. Serre, Groupes algébriques et corps de classes, Publications de l'institut de mathématique de l'université de Nancago, VII, Hermann, Paris, 1959 | MR | Zbl | Zbl
[35] I. R. Shafarevich, Algebraicheskie poverkhnosti, Tr. MIAN, 75, Nauka, M., 1965 | MR | Zbl
[36] J. W. S. Cassels, A. Frohlich, Algebraic number theory, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union, Academic Press, London–New York, 1967 | MR | MR | Zbl
[37] J.-P. Serre, Abelian $l$-adic representations and elliptic curves, Benjamin, New York–Amsterdam, 1968 | MR | Zbl | Zbl
[38] J. Tate, “$p$-divisible groups”, Proc. conf. on local fields (Dreibergen 1966), Springer-Verlag, Berlin–Heidelberg–New York, 1967, 158–183 | Zbl
[39] G. Faltings, “$p$-adic Hodge theory”, J. Amer. Math. Soc., 1:1 (1988), 255–299 | DOI | MR | Zbl
[40] M. Kuga, Fibre varieties over a symmetric space whose fibres are abelian varieties, Lecture Notes. Univ. Chicago, 1–2, Univ. Chicago, Chicago, 1964
[41] B. B. Gordon, “Topological and algebraic cycles in Kuga–Shimura varieties”, Math. Ann., 279:3 (1988), 395–402 | DOI | MR | Zbl
[42] M. Kuga, G. Shimura, “On the zeta function of a fibre variety whose fibres are Abelian varieties”, Ann. of Math. (2), 82 (1965), 478–539 | DOI | MR | Zbl
[43] G. Shimura, “On analytic families of polarized abelian varieties and automorphic functions”, Ann. of Math. (2), 78 (1963), 149–192 | DOI | MR | Zbl
[44] G. Shimura, “On the field of definition for a field of automorphic functions, I”, Ann. of Math. (2), 80 (1964), 160–189 ; G. Shimura, “On the field of definition for a field of automorphic functions, II”, 81 (1965), 124–165 | DOI | MR | Zbl | DOI | MR | Zbl
[45] R. Hall, M. Kuga, “Algebraic cycles in a fiber variety”, Sci. Papers College Gen. Ed. Univ. Tokyo, 25:1 (1975), 1–6 | MR | Zbl