Effective estimates for derivatives of inverse functions
Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 761-791.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the ‘graph’ method to obtain estimates for the derivatives of any order of inverse functions in terms of those of the original functions. We construct explicit asymptotics of the estimates obtained as the order of the derivative tends to infinity. For analytic functions and functions in Gevrey's class, we obtain explicit estimates for all derivatives of the inverse functions.
@article{IM2_2008_72_4_a6,
     author = {Yu. V. Lysenko},
     title = {Effective estimates for derivatives of inverse functions},
     journal = {Izvestiya. Mathematics },
     pages = {761--791},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a6/}
}
TY  - JOUR
AU  - Yu. V. Lysenko
TI  - Effective estimates for derivatives of inverse functions
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 761
EP  - 791
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a6/
LA  - en
ID  - IM2_2008_72_4_a6
ER  - 
%0 Journal Article
%A Yu. V. Lysenko
%T Effective estimates for derivatives of inverse functions
%J Izvestiya. Mathematics 
%D 2008
%P 761-791
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a6/
%G en
%F IM2_2008_72_4_a6
Yu. V. Lysenko. Effective estimates for derivatives of inverse functions. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 761-791. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a6/

[1] M. A. Krasnosel'skij, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskij, V. Ya. Stetsenko, Approximate solution of operator equations, Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, Wolters-Noordhoff, Groningen, 1972 | MR | MR | Zbl

[2] L. Schwartz, Analyse mathématique, vols. I, II, Hermann, Paris, 1967 | MR | MR | Zbl | Zbl

[3] P. P. Zabreiko, Yu. V. Lysenko, “Tochnye formuly dlya proizvodnykh vysshikh poryadkov obratnykh funktsii v banakhovykh prostranstvakh”, Dokl. NAN Belarusi, 45:2 (2001), 27–30 | MR

[4] P. P. Zabreiko, Yu. V. Lysenko, “Yavnye formuly dlya proizvodnykh obratnykh funktsii v banakhovykh prostranstvakh”, Izv. RAEN, 4:3 (2000), 40–56

[5] L. Collatz, Funktionalanalysis und numerische Mathematik, Die Grundlehren der mathematischen Wissenschaften, 120, Springer-Verlag, Berlin, 1964 | MR | Zbl | Zbl

[6] É. Goursat, Cours d'analyse mathématique. Tome I. Dérivées et différentielles. Integrales définies. Développements en séries. Applications géometriques; Tome II. Théorie des fonctions analytiques. Equations différentielles. Équations aux dérivées partielles. Éléments du calcul des variations, Gauthier-Villars, Paris, 1902, 1905 | Zbl

[7] A. I. Markushevich, The theory of analytic functions, Hindustan, Delhi, 1963 | MR | Zbl

[8] Sh. Ermit, Kurs analiza, ONTI, L.–M., 1936

[9] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969 | MR | MR | Zbl | Zbl

[10] H. Cartan, Calcul différentiel, Collection méthodes, Hermann, Paris, 1967 ; H. Cartan, Formes différentielles. Applications élémentaires au calcul des variations et a la théorie des courbes et des surfaces, Hermann, Paris, 1967 | MR | MR | MR | Zbl | Zbl | Zbl

[11] A. M. Ostrowski, Solution of equations and systems of equations, Pure and Applied Mathematics, 9, Academic Press, New York–London, 1960 | MR | MR | Zbl | Zbl

[12] A. G. Beged-Dov, “Lower and upper bounds for the number of lattice points in a simplex”, SIAM J. Appl. Math., 22:1 (1972), 106–108 | DOI | MR | Zbl