Conditions for solubility of difference inclusions
Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 647-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are found for the solubility of difference inclusions in the space of vector sequences determined by a linear relation (a multi-valued linear operator) on a Banach space.
@article{IM2_2008_72_4_a1,
     author = {M. S. Bichegkuev},
     title = {Conditions for solubility of difference inclusions},
     journal = {Izvestiya. Mathematics },
     pages = {647--658},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a1/}
}
TY  - JOUR
AU  - M. S. Bichegkuev
TI  - Conditions for solubility of difference inclusions
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 647
EP  - 658
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a1/
LA  - en
ID  - IM2_2008_72_4_a1
ER  - 
%0 Journal Article
%A M. S. Bichegkuev
%T Conditions for solubility of difference inclusions
%J Izvestiya. Mathematics 
%D 2008
%P 647-658
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a1/
%G en
%F IM2_2008_72_4_a1
M. S. Bichegkuev. Conditions for solubility of difference inclusions. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 647-658. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a1/

[1] R. Cross, Multivalued linear operators, Monographs and Textbooks in Pure and Applied Mathematics, 213, Dekker, New York, 1998 | MR | Zbl

[2] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, 215, Dekker, New York, 1999 | MR | Zbl

[3] A. G. Baskakov, K. I. Chernyshov, “Spectral analysis of linear relations and degenerate operator semigroups”, Sb. Math., 193:11 (2002), 1573–1610 | DOI | MR | Zbl

[4] E. Hille, R. S. Phillips, Functional analysis and semigroups, American Mathematical Society Colloquium Publications, 31, Amer. Math. Soc., Providence, RI, 1957 | MR | MR | Zbl

[5] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of linear operators, Vol. 1, Operator Theory: Advances and Applications, 49, Birkhäuser, Basel, 1990 | MR | Zbl

[6] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1035 | DOI | MR | Zbl

[7] M. S. Bichegkuev, “On a weakened Cauchy problem for a linear differential inclusion”, Math. Notes, 79:3–4 (2006), 449–453 | DOI | MR | Zbl