Algebraic independence of $p$-adic numbers
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 565-579.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove lower bounds for the transcendence degree of fields generated by values of the $p$-adic exponential function. In particular, we estimate the transcendence degree of the field $\mathbb Q(e^{\alpha_1},\dots,e^{\alpha_d})$, where $\alpha_1,\dots,\alpha_d$ are algebraic (over the field of rational numbers) $p$-adic numbers that form a basis of a finite extension of $\mathbb Q$.
@article{IM2_2008_72_3_a5,
     author = {Yu. V. Nesterenko},
     title = {Algebraic independence of $p$-adic numbers},
     journal = {Izvestiya. Mathematics },
     pages = {565--579},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a5/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Algebraic independence of $p$-adic numbers
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 565
EP  - 579
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a5/
LA  - en
ID  - IM2_2008_72_3_a5
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Algebraic independence of $p$-adic numbers
%J Izvestiya. Mathematics 
%D 2008
%P 565-579
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a5/
%G en
%F IM2_2008_72_3_a5
Yu. V. Nesterenko. Algebraic independence of $p$-adic numbers. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 565-579. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a5/

[1] N. Koblitts, $p$-adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Sovremennaya Matematika: Vvodnye kursy, Mir, M., 1982 ; N. Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, 58, Springer-Verlag, New York–Heidelberg, 1977 | MR | Zbl | MR | Zbl

[2] K. Mahler, “Ein Beweis der Transcendenz der $p$-adischen Exponentialfunction”, J. Reine Angew. Math., 169 (1932), 61–66 | Zbl

[3] N. I. Feldman, Yu. V. Nesterenko, “Transcendental numbers”, Encyclopaedia of Mathematical Sciences, 44, Springer-Verlag, Berlin, 1998, 1–345 | MR | Zbl

[4] G. R. Veldkamp, “Ein Transzenden-Satz für $p$-adische Zahlen”, J. London Math. Soc., 15:3 (1940), 183–192 | DOI | MR | Zbl

[5] A. O. Gelfond, “O delimosti raznosti stepenei tselykh chisel na stepen prostogo ideala”, Matem. sb., 7(49):1 (1940), 7–25 ; А. О. Гельфонд, Избранные труды, Наука, М., 1973, 84–99 | MR | Zbl

[6] W. W. Adams, “Transcendental numbers in the $p$-adic domain”, Amer. J. Math., 88:2 (1966), 279–308 | DOI | MR | Zbl

[7] A. O. Gelfond, “Ob algebraicheskoi nezavisimosti transtsendentnykh chisel nekotorykh klassov”, UMN, 4:5 (1949), 14–48 ; А. О. Гельфонд, Избранные труды, Наука, М., 1973, 191–222 | MR | Zbl

[8] T. N. Shorey, “$p$-adic analogue of a theorem of Tijdeman and its application”, Indag. Math., 34:5 (1972), 436–442 | MR | Zbl

[9] M. Waldschmidt, “Propriétés arithmétiques des valeurs de fonctions méromorphes algébriquement indépendantes”, Acta Arith., 23 (1973), 19–88 | MR | Zbl

[10] W. D. Brownawell, “On the development of Gelfond's method”, Number theory, Proc. Southern Illinois Conf. (Carbondale), Lecture Notes in Math., 751, 1979, 16–44 | MR | Zbl

[11] J. P. Serre, “Dépendance d'exponentielles $p$-adiques”, Theorie des Nombres (1965–1966), Semin. Delange–Pisot–Poitou, 15, 1967, 1–14 | Zbl

[12] S. Lang, Introduction to transcendental numbers, Reading, Addison-Wesley, 1966 | MR | Zbl

[13] G. V. Chudnovskii, Nekotorye analiticheskie metody v teorii transtsendentnykh chisel, Preprint IM-74-8, In-t matematiki AN USSR, Kiev, 1974 | MR

[14] G. V. Chudnovskii, Analiticheskie metody v diofantovykh priblizheniyakh, Preprint IM-74-9, In-t matematiki AN USSR, Kiev, 1974 | MR

[15] Yu. V. Nesterenko, “On the algebraic independence of algebraic numbers to algebraic powers”, Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., 31, 1983, 199–220 | MR | Zbl

[16] P. Philippon, “Critères pour l'indépendance algébrique”, Inst. Hautes Études Sci. Publ. Math., 64:1 (1986), 5–52 | DOI | MR | Zbl

[17] Yu. V. Nesterenko, “O mere algebraicheskoi nezavisimosti znachenii nekotorykh funktsii”, Matem. sb., 128(170):4(12) (1985), 545–568 ; Yu. V. Nesterenko, “On a measure of the algebraic independence of the values of certain functions”, Math. USSR Sb., 56:2 (1987), 545–567 | MR | Zbl | DOI

[18] M. Waldschmidt, “Groupes algébriques et grand degrés de transcendence”, Acta Math., 156:1 (1986), 253–294 | DOI | MR | Zbl

[19] W. D. Brownawell, “Large transcendence degree revisited. I. Exponential and non-CM cases”, Diophantine approximation and transcendence theory (Bonn, 1987), Lecture Notes in Math., 1290, Springer, Berlin, 1987, 149–173 | DOI | MR | Zbl

[20] Yu. V. Nesterenko, “O stepeni transtsendentnosti nekotorykh polei, porozhdennykh znacheniyami eksponentsialnoi funktsii”, Matem. zametki, 46:3 (1989), 40–49 | MR | Zbl

[21] K. Mahler, “Über transzendente $p$-adische Zahlen”, Compositio Math., 2 (1935), 259–275 | MR | Zbl

[22] Yu. V. Nesterenko, “O mere algebraicheskoi nezavisimosti znachenii funktsii Ramanudzhana”, Analitichekaya teoriya chisel i prilozheniya, Tr. MIAN, 218, Nauka, M., 1997, 299–334 | MR | Zbl

[23] M. Valdshmidt, Yu. V. Nesterenko, “O priblizhenii algebraicheskimi chislami znachenii eksponentsialnoi funktsii i logarifma”, Diofantovy priblizheniya, Sb., posvyaschennyi pamyati prof. N. I. Feldmana, Matem. zapiski, 2, 1996, 23–42

[24] A. B. Shidlovskii, Transtsendentnye chisla, Nauka, M., 1987 ; A. V. Shildlovskii, Transcendental numbers, de Gruyter Studies in Mathematics, 12, Walter de Gruyter, Berlin, 1989 | MR | Zbl | MR | Zbl

[25] Ph. Robba, “Lemmes de Schwarz et lemmes d'approximations $p$-adiques en plusiers variables”, Invent. Math., 48:3 (1978), 245–277 | DOI | MR | Zbl

[26] P. Philippon, “Indépendace algébrique de valeurs de fonctions exponentielles $p$-adiques”, J. Reine Angew. Math., 329 (1981), 42–51 | MR | Zbl