Algebraic independence of $p$-adic numbers
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 565-579

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove lower bounds for the transcendence degree of fields generated by values of the $p$-adic exponential function. In particular, we estimate the transcendence degree of the field $\mathbb Q(e^{\alpha_1},\dots,e^{\alpha_d})$, where $\alpha_1,\dots,\alpha_d$ are algebraic (over the field of rational numbers) $p$-adic numbers that form a basis of a finite extension of $\mathbb Q$.
@article{IM2_2008_72_3_a5,
     author = {Yu. V. Nesterenko},
     title = {Algebraic independence of $p$-adic numbers},
     journal = {Izvestiya. Mathematics },
     pages = {565--579},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a5/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Algebraic independence of $p$-adic numbers
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 565
EP  - 579
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a5/
LA  - en
ID  - IM2_2008_72_3_a5
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Algebraic independence of $p$-adic numbers
%J Izvestiya. Mathematics 
%D 2008
%P 565-579
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a5/
%G en
%F IM2_2008_72_3_a5
Yu. V. Nesterenko. Algebraic independence of $p$-adic numbers. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 565-579. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a5/