An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 479-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

The (1,1)-symplectic property for $f$-structures on a complex Riemannian manifold $M$ is a natural extension of the (1,2)-symplectic property for almost-complex structures on $M$, and arises in the analysis of complex harmonic maps with values in $M$. A characterization of this property in combinatorial terms is known only for almost-complex structures or when $M$ is the classical flag manifold $\mathbb{F}(n)$. In this paper, we remove these restrictions by considering an intersection graph defined in terms of the corresponding root system. We prove that the $f$-structure is (1,1)-symplectic exactly when the intersection graph is locally transitive. Our intersection graph construction may be helpful in characterizing many other Kähler-like properties on complex flag manifolds.
@article{IM2_2008_72_3_a2,
     author = {N. Cohen and S. Pinzon},
     title = {An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {479--496},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a2/}
}
TY  - JOUR
AU  - N. Cohen
AU  - S. Pinzon
TI  - An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 479
EP  - 496
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a2/
LA  - en
ID  - IM2_2008_72_3_a2
ER  - 
%0 Journal Article
%A N. Cohen
%A S. Pinzon
%T An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds
%J Izvestiya. Mathematics 
%D 2008
%P 479-496
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a2/
%G en
%F IM2_2008_72_3_a2
N. Cohen; S. Pinzon. An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a2/

[1] M. Black, Harmonic maps into homogeneous spaces, Pitman Research Notes in Mathematics Series, 255, Longman, Harlow; Wiley, New York, 1991 | MR

[2] A. Lichnerowicz, “Applications harmoniques et variétés kähleriennes”, Symposia Mathematica (Indam, Rome, 1968/69), III, Academic Press, London, 1970, 341–402 | MR | Zbl

[3] J. Bolton, F. Pedit, L. Woodward, “Minimal surfaces and the affine Toda field model”, J. Reine Angew. Math., 459 (1995), 119–150 | MR | Zbl

[4] K. Yano, “On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f\sp 3 +f = 0$”, Tensor (N.S.), 14 (1963), 99–109 | MR | Zbl

[5] J. H. Rawnsley, “$F$-structures, $F$-twistor spaces and harmonic maps”, Geometry seminar “Luigi Bianchi” II (Pisa, 1984), Lecture Notes in Math., 1164, Springer, Berlin, 1985, 85–159 | DOI | MR | Zbl

[6] N. Cohen, C. J. C. Negreiros, M. Paredes, S. Pinsón, L. A. B. San Martin, “$f$-structures on the classical flag manifold which admit $(1,2)$-symplectic metrics”, Tohoku Math. J. (2), 57:2 (2005), 261–271 | DOI | MR

[7] S. Salamon, “Harmonic and holomorphic maps”, Geometry seminar “Luigi Bianchi” II (Pisa, 1984), Lecture Notes in Math., 1164, Springer, Berlin, 1985, 161–224 | DOI | MR | Zbl

[8] F. E. Burstall, S. M. Salamon, “Tournaments, flags and harmonic maps”, Math. Ann., 277:2 (1987), 249–265 | DOI | MR | Zbl

[9] X. Mo, C. J. C. Negreiros, “$(1,2)$-symplectic structure on flag manifolds”, Tohoku Math. J. (2), 52:2 (2000), 271–282 | DOI | MR | Zbl

[10] A. E. Brouwer, “The enumeration of locally transitive tournaments”, Afdeling Zuivere Wiskunde, 138, Math. Centrum, Amsterdam, 1980 | MR | Zbl

[11] M. Paredes, Aspectos da geometria complexa das variedades bandeira, Ph. D. Thesis, State University of Campinas, 2000

[12] N. Cohen, C. J. C. Negreiros, L. A. B. San Martin, “Description of $(1,2)$-symplectic metrics on flag manifolds”, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemp. Math., 288, 2001, 300–304 | MR | Zbl

[13] N. Cohen, C. J. C. Negreiros, L. A. B. San Martin, “$(1,2)$-symplectic metrics, flag manifolds and tournaments”, Bull. London Math. Soc., 34:6 (2002), 641–649 | DOI | MR | Zbl

[14] N. Cohen, M. Paredes, S. Pinzón, “Locally transitive tournaments and the classification of $(1,2)$-symplectic metrics on maximal flag manifolds”, Illinois J. Math., 48:4 (2004), 1405–1415 | MR | Zbl

[15] N. Cohen, C. J. C. Negreiros, L. A. B. San Martin, “A rank-three condition for invariant $(1,2)$-symplectic almost Hermitian structures on flag manifolds”, Bull. Braz. Math. Soc. (N.S.), 33:1 (2002), 49–73 | DOI | MR | Zbl

[16] S. Pinzón, Variedades bandeira, $f$-structures e métricas $(1,2)$-simpléticas, Ph. D. Thesis, State University of Campinas, 2003

[17] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, New York–London, 1978 | MR | Zbl

[18] R. de C. de J. Silva, Estruturas quase Hermitianas invariantes em espaços homogêneos de grupos semi-simples, Tese de doutorado, Universidade Estadual de Campinas, 2003

[19] T. A. McKee, F. R. McMorris, Topics in intersection graph theory, SIAM Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia, PA, 1999 | MR | Zbl

[20] L. A. B. San Martin, C. J. C. Negreiros, “Invariant almost Hermitian structures on flag manifolds”, Adv. Math., 178:2 (2003), 277–310 | DOI | MR | Zbl

[21] A. Gray, L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123 (1980), 35–58 | DOI | MR | Zbl

[22] G. Warner, Harmonic analysis on semi-simple Lie groups, I, Die Grundlehren der mathematischen Wissenschaften, 188, Springer-Verlag, New York–Heidelberg, 1972 | MR | Zbl

[23] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, Berlin, 1978 | MR | Zbl

[24] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol. II, Interscience Tracts in Pure and Applied Mathematics, 15, Wiley, New York–London–Sydney, 1969 | MR | Zbl | Zbl

[25] L. A. B. San Martin, Álgebras de Lie, S. P. Campinas, Editora da Unicamp, 1999

[26] A. Borel, “Kählerian coset spaces of semisimple Lie groups”, Proc. Nat. Acad. Sci., 40:12 (1954), 1147–1151 | DOI | MR | Zbl

[27] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol. I, Wiley, New York–London, 1963 | MR | Zbl | Zbl