An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 479-496
Voir la notice de l'article provenant de la source Math-Net.Ru
The (1,1)-symplectic property for $f$-structures on a complex Riemannian
manifold $M$ is a natural extension of the (1,2)-symplectic property for
almost-complex structures on $M$, and arises in the analysis of complex
harmonic maps with values in $M$. A characterization of this property
in combinatorial terms is known only for almost-complex structures or when
$M$ is the classical flag manifold $\mathbb{F}(n)$. In this paper, we
remove these restrictions by considering an intersection graph defined
in terms of the corresponding root system. We prove that the $f$-structure is
(1,1)-symplectic exactly when the intersection graph is locally
transitive. Our intersection graph construction may be helpful
in characterizing many other Kähler-like properties on complex flag
manifolds.
@article{IM2_2008_72_3_a2,
author = {N. Cohen and S. Pinzon},
title = {An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds},
journal = {Izvestiya. Mathematics },
pages = {479--496},
publisher = {mathdoc},
volume = {72},
number = {3},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a2/}
}
TY - JOUR AU - N. Cohen AU - S. Pinzon TI - An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds JO - Izvestiya. Mathematics PY - 2008 SP - 479 EP - 496 VL - 72 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a2/ LA - en ID - IM2_2008_72_3_a2 ER -
N. Cohen; S. Pinzon. An extension of the (1,2)-symplectic property for $f$-structures on flag manifolds. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a2/