Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_2_a7, author = {V. I. Skalyga}, title = {V.~A.~Markov's theorems in normed spaces}, journal = {Izvestiya. Mathematics }, pages = {383--412}, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a7/} }
V. I. Skalyga. V.~A.~Markov's theorems in normed spaces. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 383-412. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a7/
[1] V. A. Markov, O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, Izd-vo Imp. AN, SPb., 1892
[2] A. A. Markov, Ob odnom voprose D. I. Mendeleeva. Izbrannye trudy, GITL, M.–L., 1948
[3] A. C. Schaeffer, R. J. Duffin, “On some inequalities of S. Bernstein and W. Markoff for derivatives of polynomials”, Bull. Amer. Math. Soc., 44:4 (1938), 289–297 | DOI | Zbl
[4] S. A. Telyakovskiĭ, “Work on the theory of approximation of functions carried out at the V. A. Steklov Institute of Mathematics”, Proc. Steklov Inst. Math., 182:1 (1990), 141–197 | MR | Zbl
[5] A. V. Andrianov, “On some open problems for algebraic polynomials on bounded convex bodies”, East J. Approx., 5:1 (1999), 117–123 | MR | Zbl
[6] G. G. Magaril-Ilyaev, V. M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000
[7] V. I. Skalyga, “Bounds for the derivatives of polynomials on centrally symmetric convex bodies”, Izv. Math., 69:3 (2005), 607–621 | DOI | MR | Zbl
[8] V. I. Skalyga, “Analogs of the Markov and Schaeffer–Duffin inequalities for convex bodies”, Math. Notes, 68:1 (2000), 130–134 | MR | Zbl
[9] V. I. Skalyga, “Multidimensional analogues of the Markov and Bernstein inequalities”, Izv. Math., 65:6 (2001), 1197–1241 | DOI | MR | Zbl
[10] Y. Sarantopoulos, “Bounds on derivatives of polynomials on Banach spaces”, Math. Proc. Cambridge Philos. Soc., 110:2 (1991), 307–312 | DOI | MR | Zbl
[11] O. D. Kellogg, “On bounded polynomials in several variables”, Math. Z., 27:1 (1928), 55–64 | DOI | MR
[12] G. A. Muñoz, Y. Sarantopoulos, “Bernstein and Markov-type inequalities for polynomials on a real Banach spaces”, Math. Proc. Cambridge Philos. Soc., 133:3 (2002), 515–530 | DOI | MR | Zbl
[13] Yu. N. Subbotin, Yu. S. Vasilev, “Neravenstva Markova v $\mathbb R^m$, neuluchshaemye na klasse vsekh vypuklykh kompaktnykh tel”, Dokl. RAN, 360:6 (1998), 734–735 | MR | Zbl
[14] V. I. Skalyga, “Estimates for the derivatives of polynomials on convex bodies”, Proc. Steklov Inst. Math., 3:218 (1997), 372–383 | MR | Zbl
[15] L. A. Harris, “Bounds on the derivatives of holomorphic functions of vectors”, Analyse Fonctionnele et Applications, Comptes Rendus Colloq. Analyse (Rio de Janeiro, 1972), Hermann, Paris, 1975, 145–163 | MR | Zbl
[16] A. E. Taylor, “Additions to the theory of polynomials in normed linear spaces”, Tohoku Math. J., 44 (1938), 302–318 | Zbl
[17] S. Banach, “Über homogene Polynome in ($L^2$)”, Studia Math., 7 (1938), 36–44 | Zbl
[18] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl
[19] M. V. Menshikov, A. M. Revyakin, A. M. Kopylova, Yu. N. Makarov, B. S. Stechkin, Kombinatornyi analiz. Zadachi i uprazhneniya, Nauka, M., 1982 | MR