Alexander modules of irreducible $C$-groups
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 305-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description of the Alexander modules of knotted $n$-manifolds in the sphere $S^{n+2}$ for $n\geqslant2$ and the Alexander modules of irreducible Hurwitz curves. This description is applied to investigate the properties of the first homology groups of cyclic coverings of the sphere $S^{n+2}$ and the complex projective plane $\mathbb C\mathbb P^2$ branched respectively along knotted $n$-manifolds and irreducible Hurwitz (in particular, algebraic) curves.
@article{IM2_2008_72_2_a5,
     author = {Vik. S. Kulikov},
     title = {Alexander modules of irreducible $C$-groups},
     journal = {Izvestiya. Mathematics },
     pages = {305--344},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Alexander modules of irreducible $C$-groups
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 305
EP  - 344
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/
LA  - en
ID  - IM2_2008_72_2_a5
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Alexander modules of irreducible $C$-groups
%J Izvestiya. Mathematics 
%D 2008
%P 305-344
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/
%G en
%F IM2_2008_72_2_a5
Vik. S. Kulikov. Alexander modules of irreducible $C$-groups. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 305-344. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/

[1] V. S. Kulikov, “A geometric realization of $C$-groups”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 197–206 | DOI | MR | Zbl

[2] M. A. Kervaire, “On higher dimensional knots”, Differential and combinatorial topology, A Symposium in Honor of Marston Morse, Princeton Univ. Press, Princeton, NJ, 1965, 105–119 | MR | Zbl

[3] J. Levin, “Some results on higher dimensional knot groups”, Knot theory, Proc. Sem. (Plans-sur-Bex, 1977), Lecture Notes in Math., 685, Springer, Berlin, 1978, 243–273 | MR | Zbl

[4] M. Kervaire, C. Weber, “A survey of multidimensional knots”, Knot theory, Proc. Sem. (Plans-sur-Bex, 1977), Lecture Notes in Math., 685, Springer, Berlin, 1978, 61–134 | MR | Zbl

[5] V. M. Kharlamov, V. S. Kulikov, “On braid monodromy factorizations”, Izv. Math., 67:3 (2003), 499–534 | DOI | MR | Zbl

[6] G.-M. Greuel, V. S. Kulikov, “On symplectic coverings of the projective plane”, Izv. Math., 69:4 (2005), 667–701 | DOI | MR | Zbl

[7] V. S. Kulikov, “A factorization formula for the full twist of double the number of string”, Izv. Math., 68:1 (2004), 125–158 | DOI | MR | Zbl

[8] V. S. Kulikov, “Alexander polynomials of plane algebraic curves”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 67–89 | DOI | MR | Zbl

[9] Yu. V. Kuz'min, “On a method of constructing $C$-groups”, Russian Acad. Sci. Izv. Math., 59:4 (1995), 765–783 | DOI | MR | Zbl

[10] O. V. Kulikova, “On the fundamental groups of the complements of Hurwitz curves”, Izv. Math., 69:1 (2005), 123–130 | DOI | MR | Zbl

[11] J. P. Levin, “Algebraic structure of knot modules”, Lecture Notes in Math., 772, Springer, Berlin, 1980 | MR | Zbl

[12] J. Levin, “Knot modules. I”, Trans. Amer. Math. Soc., 229 (1977), 1–50 | DOI | MR | Zbl

[13] V. S. Kulikov, “Alexander polynomials of Hurwitz curves”, Izv. Math., 70:1 (2006), 69–86 | DOI | MR | Zbl

[14] S. Leng, Algebra, Mir, M., 1968 | Zbl

[15] R. H. Crowell, R. H. Fox, Introduction to knot theory, Based upon lectures given at Haverford College under the Philips Lecture Program, Ginn, Boston, MA, 1963 | MR | Zbl

[16] J. Milnor, “Singular points of complex hypersurfaces”, Annals of Mathematics Studies, 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968 | MR | Zbl

[17] Yu. V. Kuz'min, “The groups of knotted compact surfaces, and central extensions”, Sb. Math., 187:2 (1996), 237–257 | DOI | MR | Zbl

[18] G. Baumslag, D. Solitar, “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl

[19] J. W. Milnor, “Infinite cyclic covers”, Conference on the Topology of Manifolds (Michigan State Univ., 1967), Prindle, Weber $\$ Schmidt, Boston, MA, 1968, 115–133 | MR | Zbl

[20] O. Zariski, “On the problem of existence of algebraic functions of two variables possessing a given branch curve”, Amer. J. Math., 51:2 (1929), 305–328 | DOI | MR | Zbl

[21] V. S. Kulikov, “On the fundamental groups of complements of toral curves”, Izv. Math., 61:1 (1997), 89–112 | DOI | MR | Zbl