Alexander modules of irreducible $C$-groups
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 305-344
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a complete description of the Alexander modules of knotted $n$-manifolds in the sphere $S^{n+2}$ for $n\geqslant2$ and the Alexander modules of irreducible Hurwitz curves. This description is applied to investigate the properties of the first homology groups of cyclic coverings of the sphere $S^{n+2}$ and the complex projective plane $\mathbb C\mathbb P^2$ branched respectively along knotted $n$-manifolds and irreducible Hurwitz (in particular, algebraic) curves.
@article{IM2_2008_72_2_a5,
author = {Vik. S. Kulikov},
title = {Alexander modules of irreducible $C$-groups},
journal = {Izvestiya. Mathematics },
pages = {305--344},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/}
}
Vik. S. Kulikov. Alexander modules of irreducible $C$-groups. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 305-344. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/