Alexander modules of irreducible $C$-groups
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 305-344

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description of the Alexander modules of knotted $n$-manifolds in the sphere $S^{n+2}$ for $n\geqslant2$ and the Alexander modules of irreducible Hurwitz curves. This description is applied to investigate the properties of the first homology groups of cyclic coverings of the sphere $S^{n+2}$ and the complex projective plane $\mathbb C\mathbb P^2$ branched respectively along knotted $n$-manifolds and irreducible Hurwitz (in particular, algebraic) curves.
@article{IM2_2008_72_2_a5,
     author = {Vik. S. Kulikov},
     title = {Alexander modules of irreducible $C$-groups},
     journal = {Izvestiya. Mathematics },
     pages = {305--344},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Alexander modules of irreducible $C$-groups
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 305
EP  - 344
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/
LA  - en
ID  - IM2_2008_72_2_a5
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Alexander modules of irreducible $C$-groups
%J Izvestiya. Mathematics 
%D 2008
%P 305-344
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/
%G en
%F IM2_2008_72_2_a5
Vik. S. Kulikov. Alexander modules of irreducible $C$-groups. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 305-344. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a5/