On large distances between consecutive zeros of the Riemann zeta-function
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 291-304

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new estimate for the number of zeros $\rho_n=\beta_n+i\gamma_n$ of the Riemann zeta-function, $14\gamma_1\gamma_2\dots\le\gamma_n\le\gamma_{n+1}\le\cdots$, whose ordinates $\gamma_n$ belong to a given interval and for which the difference $\gamma_{n+r}-\gamma_n$ is sufficiently large in comparison with the ‘mean’ value $2\pi r(\ln\frac{\gamma_n}{2\pi})^{-1}$.
@article{IM2_2008_72_2_a4,
     author = {M. A. Korolev},
     title = {On large distances between consecutive zeros of the {Riemann} zeta-function},
     journal = {Izvestiya. Mathematics },
     pages = {291--304},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a4/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On large distances between consecutive zeros of the Riemann zeta-function
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 291
EP  - 304
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a4/
LA  - en
ID  - IM2_2008_72_2_a4
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On large distances between consecutive zeros of the Riemann zeta-function
%J Izvestiya. Mathematics 
%D 2008
%P 291-304
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a4/
%G en
%F IM2_2008_72_2_a4
M. A. Korolev. On large distances between consecutive zeros of the Riemann zeta-function. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 291-304. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a4/