On large distances between consecutive zeros of the Riemann zeta-function
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 291-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new estimate for the number of zeros $\rho_n=\beta_n+i\gamma_n$ of the Riemann zeta-function, $14\gamma_1\gamma_2\dots\le\gamma_n\le\gamma_{n+1}\le\cdots$, whose ordinates $\gamma_n$ belong to a given interval and for which the difference $\gamma_{n+r}-\gamma_n$ is sufficiently large in comparison with the ‘mean’ value $2\pi r(\ln\frac{\gamma_n}{2\pi})^{-1}$.
@article{IM2_2008_72_2_a4,
     author = {M. A. Korolev},
     title = {On large distances between consecutive zeros of the {Riemann} zeta-function},
     journal = {Izvestiya. Mathematics },
     pages = {291--304},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a4/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On large distances between consecutive zeros of the Riemann zeta-function
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 291
EP  - 304
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a4/
LA  - en
ID  - IM2_2008_72_2_a4
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On large distances between consecutive zeros of the Riemann zeta-function
%J Izvestiya. Mathematics 
%D 2008
%P 291-304
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a4/
%G en
%F IM2_2008_72_2_a4
M. A. Korolev. On large distances between consecutive zeros of the Riemann zeta-function. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 291-304. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a4/

[1] A. Selberg, “The zeta function and the Riemann hypothesis”, C. R. Dixieme Congres Math. Scandinaves (1946), 10, Jul. Gjellerups Forlag, Copenhagen, 1947, 187–200 | MR | Zbl

[2] H. L. Montgomery, “The pair correlation of zeros of the zeta function”, Proc. Sympos. Pure Math., vol. XXIV (St. Louis Univ., MO, 1972), Analytic Number Theory, Amer. Math. Soc., Providence, RI, 1973, 181–193 | MR | Zbl

[3] J. Mueller, “On the difference between consecutive zeros of the Riemann zeta function”, J. Number Theory, 14:3 (1982), 327–331 | DOI | MR | Zbl

[4] R. R. Hall, “The behaviour of the Riemann zeta-function on the critical line”, Mathematika, 46:2 (1999), 281–313 | MR | Zbl

[5] R. R. Hall, “A Wirtinger type inequality and the spacing of the zeros of the Riemann zeta-function”, J. Number Theory, 93:2 (2002), 235–245 | DOI | MR | Zbl

[6] A. Fujii, “On the distribution of the zeros of the Riemann zeta function in short intervals”, Bull. Amer. Math. Soc., 81:1 (1975), 139–142 | DOI | MR | Zbl

[7] J. E. Littlewood, “On the zeros of the Riemann zeta-function”, Proc. Cambr. Phil. Soc., 22 (1924), 295–318 | DOI | Zbl

[8] A. Fujii, “On the difference between $r$ consecutive ordinates of the zeros of the Riemann zeta function”, Proc. Japan Acad., 51:10 (1975), 741–743 | DOI | MR | Zbl

[9] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edition, revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986 | MR | Zbl

[10] A. Ivić, “On small values of the Riemann zeta-function on the critical line and gaps between zeros”, Lithuanian Math. J., 42:1 (2002), 25–36 | DOI | MR | Zbl

[11] A. Fujii, “On the gaps between consecutive zeros of the Riemann zeta function”, Proc. Japan Acad. Ser. A. Math. Sci., 66:4 (1990), 97–100 | DOI | MR | Zbl

[12] A. A. Karatsuba, “On the function $S(t)$”, Izv. Math., 60:5 (1996), 901–931 | DOI | MR | Zbl

[13] M. A. Korolev, “The argument of the Riemann zeta-function on the critical line”, Izv. Math., 67:2 (2003), 225–264 | DOI | MR | Zbl

[14] A. A. Karatsuba, M. A. Korolev, “Behaviour of the argument of the Riemann zeta function on the critical line”, Russian Math. Surveys, 61:3 (2006), 389–482 | DOI | MR | Zbl

[15] A. Ghosh, “On Riemann's zeta-function – sign changes of $S(T)$”, Recent progress in analytic number theory, vol. 1 (Durham, 1979), Academic Press, London–New York, 1981, 25–46 | MR | Zbl